Internal
problem
ID
[8976] Book
:
Collection
of
Kovacic
problems Section
:
section
1 Problem
number
:
404 Date
solved
:
Sunday, November 10, 2024 at 04:21:28 AM CAS
classification
:
[[_2nd_order, _missing_x]]
Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\begin{align*} y &= z \left (x \right ) e^{-\int \frac {B}{2 A} \,dx} \end{align*}
The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3
cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty \). The following table
summarizes these cases.
Need to have at least one pole
that is either order \(2\) or odd order
greater than \(2\). Any other pole order
is allowed as long as the above
condition is satisfied. Hence the
following set of pole orders are all
allowed. \(\{1,2\}\),\(\{1,3\}\),\(\{2\}\),\(\{3\}\),\(\{3,4\}\),\(\{1,2,5\}\).
no condition
3
\(\left \{ 1,2\right \} \)
\(\left \{ 2,3,4,5,6,7,\cdots \right \} \)
Table 2.392: Necessary conditions for each Kovacic case
The order of \(r\) at \(\infty \) is the degree of \(t\) minus the degree of \(s\). Therefore
There are no poles in \(r\). Therefore the set of poles \(\Gamma \) is empty. Since there is no odd order pole
larger than \(2\) and the order at \(\infty \) is \(0\) then the necessary conditions for case one are met.
Therefore
\begin{align*} L &= [1] \end{align*}
Since \(r = -{\frac {3}{4}}\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution
for transformed ode \(z''=r z\) as one solution is
`Methodsfor second order ODEs:---Trying classification methods ---tryinga quadraturecheckingif the LODE has constant coefficients<-constant coefficients successful`