5.24 problem 11

5.24.1 Solving as quadrature ode
5.24.2 Maple step by step solution

Internal problem ID [12973]
Internal file name [OUTPUT/11626_Tuesday_November_07_2023_11_52_16_PM_91685053/index.tex]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89
Problem number: 11.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type

[_quadrature]

\[ \boxed {y^{\prime }-y \ln \left ({| y|}\right )=0} \]

5.24.1 Solving as quadrature ode

Integrating both sides gives \begin {align*} \int \frac {1}{y \ln \left ({| y |}\right )}d y &= t +c_{1}\\ \left \{\begin {array}{cc} \ln \left (-\ln \left (-y \right )\right ) & y <0 \\ \operatorname {undefined} & y =0 \\ \ln \left (-\ln \left (y \right )\right ) & 0

Solving for \(y\) gives these solutions \begin {align*} \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= {\mathrm e}^{-{\mathrm e}^{t +c_{1}}} \\ \tag{2} y &= -{\mathrm e}^{-{\mathrm e}^{t +c_{1}}} \\ \end{align*}

Figure 100: Slope field plot

Verification of solutions

\[ y = {\mathrm e}^{-{\mathrm e}^{t +c_{1}}} \] Verified OK.

\[ y = -{\mathrm e}^{-{\mathrm e}^{t +c_{1}}} \] Verified OK.

5.24.2 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & y^{\prime }-y \ln \left ({| y|}\right )=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & y^{\prime }=y \ln \left ({| y|}\right ) \\ \bullet & {} & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {y^{\prime }}{y \ln \left ({| y|}\right )}=1 \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} t \\ {} & {} & \int \frac {y^{\prime }}{y \ln \left ({| y|}\right )}d t =\int 1d t +c_{1} \\ \bullet & {} & \textrm {Cannot compute integral}\hspace {3pt} \\ {} & {} & \int \frac {y^{\prime }}{y \ln \left ({| y|}\right )}d t =t +c_{1} \end {array} \]

Maple trace

`Methods for first order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying 1st order linear 
trying Bernoulli 
trying separable 
<- separable successful`
 

Solution by Maple

Time used: 0.125 (sec). Leaf size: 21

dsolve(diff(y(t),t)=y(t)*ln(abs(y(t))),y(t), singsol=all)
 

\begin{align*} y \left (t \right ) &= {\mathrm e}^{-c_{1} {\mathrm e}^{t}} \\ y \left (t \right ) &= -{\mathrm e}^{-c_{1} {\mathrm e}^{t}} \\ \end{align*}

Solution by Mathematica

Time used: 0.321 (sec). Leaf size: 35

DSolve[y'[t]==y[t]*Log[Abs[y[t]]],y[t],t,IncludeSingularSolutions -> True]
 

\begin{align*} y(t)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{K[1] \log (| K[1]| )}dK[1]\&\right ][t+c_1] \\ y(t)\to 1 \\ \end{align*}