5.12 problem 3 and 15(iv)

5.12.1 Existence and uniqueness analysis
5.12.2 Solving as quadrature ode
5.12.3 Maple step by step solution

Internal problem ID [12961]
Internal file name [OUTPUT/11614_Tuesday_November_07_2023_11_52_05_PM_58954603/index.tex]

Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89
Problem number: 3 and 15(iv).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type

[_quadrature]

\[ \boxed {y^{\prime }-\cos \left (y\right )=0} \] With initial conditions \begin {align*} [y \left (0\right ) = \pi ] \end {align*}

5.12.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as \begin {align*} y^{\prime } &= f(t,y)\\ &= \cos \left (y \right ) \end {align*}

The \(y\) domain of \(f(t,y)\) when \(t=0\) is \[ \{-\infty

The \(y\) domain of \(\frac {\partial f}{\partial y}\) when \(t=0\) is \[ \{-\infty

5.12.2 Solving as quadrature ode

Integrating both sides gives \begin {align*} \int \frac {1}{\cos \left (y \right )}d y &= \int {dt}\\ \ln \left (\sec \left (y \right )+\tan \left (y \right )\right )&= t +c_{1} \end {align*}

Initial conditions are used to solve for \(c_{1}\). Substituting \(t=0\) and \(y=\pi \) in the above solution gives an equation to solve for the constant of integration. \begin {align*} i \pi = c_{1} \end {align*}

The solutions are \begin {align*} c_{1} = i \pi \end {align*}

Trying the constant \begin {align*} c_{1} = i \pi \end {align*}

Substituting \(c_{1}\) found above in the general solution gives \begin {align*} \ln \left (\sec \left (y \right )+\tan \left (y \right )\right ) = i \pi +t \end {align*}

The constant \(c_{1} = i \pi \) gives valid solution.

Summary

The solution(s) found are the following \begin{align*} \tag{1} \ln \left (\sec \left (y\right )+\tan \left (y\right )\right ) &= i \pi +t \\ \end{align*}

Verification of solutions

\[ \ln \left (\sec \left (y\right )+\tan \left (y\right )\right ) = i \pi +t \] Verified OK.

5.12.3 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left [y^{\prime }-\cos \left (y\right )=0, y \left (0\right )=\pi \right ] \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & y^{\prime }=\cos \left (y\right ) \\ \bullet & {} & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {y^{\prime }}{\cos \left (y\right )}=1 \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} t \\ {} & {} & \int \frac {y^{\prime }}{\cos \left (y\right )}d t =\int 1d t +c_{1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & \ln \left (\sec \left (y\right )+\tan \left (y\right )\right )=t +c_{1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} y \\ {} & {} & y=\arctan \left (\frac {\left ({\mathrm e}^{t +c_{1}}\right )^{2}-1}{\left ({\mathrm e}^{t +c_{1}}\right )^{2}+1}, \frac {2 \,{\mathrm e}^{t +c_{1}}}{\left ({\mathrm e}^{t +c_{1}}\right )^{2}+1}\right ) \\ \bullet & {} & \textrm {Use initial condition}\hspace {3pt} y \left (0\right )=\pi \\ {} & {} & \pi =\arctan \left (\frac {\left ({\mathrm e}^{c_{1}}\right )^{2}-1}{\left ({\mathrm e}^{c_{1}}\right )^{2}+1}, \frac {2 \,{\mathrm e}^{c_{1}}}{\left ({\mathrm e}^{c_{1}}\right )^{2}+1}\right ) \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} c_{1} \\ {} & {} & c_{1} =\left (\right ) \\ \bullet & {} & \textrm {Solution does not satisfy initial condition}\hspace {3pt} \end {array} \]

Maple trace

`Methods for first order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying 1st order linear 
trying Bernoulli 
trying separable 
<- separable successful`
 

Solution by Maple

Time used: 0.031 (sec). Leaf size: 32

dsolve([diff(y(t),t)=cos( y(t)),y(0) = Pi],y(t), singsol=all)
 

\[ y \left (t \right ) = \arctan \left (\frac {{\mathrm e}^{2 t}-1}{{\mathrm e}^{2 t}+1}, -\frac {2 \,{\mathrm e}^{t}}{{\mathrm e}^{2 t}+1}\right ) \]

Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[{y'[t]==Cos[ y[t]],{y[0]==Pi}},y[t],t,IncludeSingularSolutions -> True]
 

{}