5.7 problem 37

5.7.1 Existence and uniqueness analysis
5.7.2 Maple step by step solution

Internal problem ID [6662]
Internal file name [OUTPUT/5910_Sunday_June_05_2022_04_01_13_PM_51186879/index.tex]

Book: DIFFERENTIAL EQUATIONS with Boundary Value Problems. DENNIS G. ZILL, WARREN S. WRIGHT, MICHAEL R. CULLEN. Brooks/Cole. Boston, MA. 2013. 8th edition.
Section: CHAPTER 7 THE LAPLACE TRANSFORM. 7.2.2 TRANSFORMS OF DERIVATIVES Page 289
Problem number: 37.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

[[_2nd_order, _linear, _nonhomogeneous]]

\[ \boxed {y^{\prime \prime }+y=\sqrt {2}\, \sin \left (\sqrt {2}\, t \right )} \] With initial conditions \begin {align*} [y \left (0\right ) = 10, y^{\prime }\left (0\right ) = 0] \end {align*}

5.7.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as \begin {align*} y^{\prime \prime } + p(t)y^{\prime } + q(t) y &= F \end {align*}

Where here \begin {align*} p(t) &=0\\ q(t) &=1\\ F &=\sqrt {2}\, \sin \left (\sqrt {2}\, t \right ) \end {align*}

Hence the ode is \begin {align*} y^{\prime \prime }+y = \sqrt {2}\, \sin \left (\sqrt {2}\, t \right ) \end {align*}

The domain of \(p(t)=0\) is \[ \{-\infty

Solving using the Laplace transform method. Let \begin {align*} \mathcal {L}\left (y\right ) =Y(s) \end {align*}

Taking the Laplace transform of the ode and using the relations that \begin {align*} \mathcal {L}\left (y^{\prime }\right ) &= s Y(s) - y \left (0\right )\\ \mathcal {L}\left (y^{\prime \prime }\right ) &= s^2 Y(s) - y'(0) - s y \left (0\right ) \end {align*}

The given ode now becomes an algebraic equation in the Laplace domain \begin {align*} s^{2} Y \left (s \right )-y^{\prime }\left (0\right )-s y \left (0\right )+Y \left (s \right ) = \frac {2}{s^{2}+2}\tag {1} \end {align*}

But the initial conditions are \begin {align*} y \left (0\right )&=10\\ y'(0) &=0 \end {align*}

Substituting these initial conditions in above in Eq (1) gives \begin {align*} s^{2} Y \left (s \right )-10 s +Y \left (s \right ) = \frac {2}{s^{2}+2} \end {align*}

Solving the above equation for \(Y(s)\) results in \begin {align*} Y(s) = \frac {10 s^{3}+20 s +2}{\left (s^{2}+2\right ) \left (s^{2}+1\right )} \end {align*}

Applying partial fractions decomposition results in \[ Y(s)= \frac {i \sqrt {2}}{2 s -2 i \sqrt {2}}-\frac {i \sqrt {2}}{2 \left (s +i \sqrt {2}\right )}+\frac {5-i}{s -i}+\frac {5+i}{s +i} \] The inverse Laplace of each term above is now found, which gives \begin {align*} \mathcal {L}^{-1}\left (\frac {i \sqrt {2}}{2 s -2 i \sqrt {2}}\right ) &= \frac {i \sqrt {2}\, {\mathrm e}^{i \sqrt {2}\, t}}{2}\\ \mathcal {L}^{-1}\left (-\frac {i \sqrt {2}}{2 \left (s +i \sqrt {2}\right )}\right ) &= -\frac {i \sqrt {2}\, {\mathrm e}^{-i \sqrt {2}\, t}}{2}\\ \mathcal {L}^{-1}\left (\frac {5-i}{s -i}\right ) &= \left (5-i\right ) {\mathrm e}^{i t}\\ \mathcal {L}^{-1}\left (\frac {5+i}{s +i}\right ) &= \left (5+i\right ) {\mathrm e}^{-i t} \end {align*}

Adding the above results and simplifying gives \[ y=10 \cos \left (t \right )+2 \sin \left (t \right )-\sqrt {2}\, \sin \left (\sqrt {2}\, t \right ) \] Simplifying the solution gives \[ y = 10 \cos \left (t \right )+2 \sin \left (t \right )-\sqrt {2}\, \sin \left (\sqrt {2}\, t \right ) \]

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= 10 \cos \left (t \right )+2 \sin \left (t \right )-\sqrt {2}\, \sin \left (\sqrt {2}\, t \right ) \\ \end{align*}

(a) Solution plot

(b) Slope field plot

Verification of solutions

\[ y = 10 \cos \left (t \right )+2 \sin \left (t \right )-\sqrt {2}\, \sin \left (\sqrt {2}\, t \right ) \] Verified OK.

5.7.2 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left [y^{\prime \prime }+y=\sqrt {2}\, \sin \left (\sqrt {2}\, t \right ), y \left (0\right )=10, y^{\prime }{\raise{-0.36em}{\Big |}}{\mstack {}{_{\left \{t \hiderel {=}0\right \}}}}=0\right ] \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & y^{\prime \prime } \\ \bullet & {} & \textrm {Characteristic polynomial of homogeneous ODE}\hspace {3pt} \\ {} & {} & r^{2}+1=0 \\ \bullet & {} & \textrm {Use quadratic formula to solve for}\hspace {3pt} r \\ {} & {} & r =\frac {0\pm \left (\sqrt {-4}\right )}{2} \\ \bullet & {} & \textrm {Roots of the characteristic polynomial}\hspace {3pt} \\ {} & {} & r =\left (\mathrm {-I}, \mathrm {I}\right ) \\ \bullet & {} & \textrm {1st solution of the homogeneous ODE}\hspace {3pt} \\ {} & {} & y_{1}\left (t \right )=\cos \left (t \right ) \\ \bullet & {} & \textrm {2nd solution of the homogeneous ODE}\hspace {3pt} \\ {} & {} & y_{2}\left (t \right )=\sin \left (t \right ) \\ \bullet & {} & \textrm {General solution of the ODE}\hspace {3pt} \\ {} & {} & y=c_{1} y_{1}\left (t \right )+c_{2} y_{2}\left (t \right )+y_{p}\left (t \right ) \\ \bullet & {} & \textrm {Substitute in solutions of the homogeneous ODE}\hspace {3pt} \\ {} & {} & y=c_{1} \cos \left (t \right )+c_{2} \sin \left (t \right )+y_{p}\left (t \right ) \\ \square & {} & \textrm {Find a particular solution}\hspace {3pt} y_{p}\left (t \right )\hspace {3pt}\textrm {of the ODE}\hspace {3pt} \\ {} & \circ & \textrm {Use variation of parameters to find}\hspace {3pt} y_{p}\hspace {3pt}\textrm {here}\hspace {3pt} f \left (t \right )\hspace {3pt}\textrm {is the forcing function}\hspace {3pt} \\ {} & {} & \left [y_{p}\left (t \right )=-y_{1}\left (t \right ) \left (\int \frac {y_{2}\left (t \right ) f \left (t \right )}{W \left (y_{1}\left (t \right ), y_{2}\left (t \right )\right )}d t \right )+y_{2}\left (t \right ) \left (\int \frac {y_{1}\left (t \right ) f \left (t \right )}{W \left (y_{1}\left (t \right ), y_{2}\left (t \right )\right )}d t \right ), f \left (t \right )=\sqrt {2}\, \sin \left (\sqrt {2}\, t \right )\right ] \\ {} & \circ & \textrm {Wronskian of solutions of the homogeneous equation}\hspace {3pt} \\ {} & {} & W \left (y_{1}\left (t \right ), y_{2}\left (t \right )\right )=\left [\begin {array}{cc} \cos \left (t \right ) & \sin \left (t \right ) \\ -\sin \left (t \right ) & \cos \left (t \right ) \end {array}\right ] \\ {} & \circ & \textrm {Compute Wronskian}\hspace {3pt} \\ {} & {} & W \left (y_{1}\left (t \right ), y_{2}\left (t \right )\right )=1 \\ {} & \circ & \textrm {Substitute functions into equation for}\hspace {3pt} y_{p}\left (t \right ) \\ {} & {} & y_{p}\left (t \right )=\sqrt {2}\, \left (-\cos \left (t \right ) \left (\int \sin \left (t \right ) \sin \left (\sqrt {2}\, t \right )d t \right )+\sin \left (t \right ) \left (\int \cos \left (t \right ) \sin \left (\sqrt {2}\, t \right )d t \right )\right ) \\ {} & \circ & \textrm {Compute integrals}\hspace {3pt} \\ {} & {} & y_{p}\left (t \right )=-\sqrt {2}\, \sin \left (\sqrt {2}\, t \right ) \\ \bullet & {} & \textrm {Substitute particular solution into general solution to ODE}\hspace {3pt} \\ {} & {} & y=c_{1} \cos \left (t \right )+c_{2} \sin \left (t \right )-\sqrt {2}\, \sin \left (\sqrt {2}\, t \right ) \\ \square & {} & \textrm {Check validity of solution}\hspace {3pt} y=c_{1} \cos \left (t \right )+c_{2} \sin \left (t \right )-\sqrt {2}\, \sin \left (\sqrt {2}\, t \right ) \\ {} & \circ & \textrm {Use initial condition}\hspace {3pt} y \left (0\right )=10 \\ {} & {} & 10=c_{1} \\ {} & \circ & \textrm {Compute derivative of the solution}\hspace {3pt} \\ {} & {} & y^{\prime }=-c_{1} \sin \left (t \right )+c_{2} \cos \left (t \right )-2 \cos \left (\sqrt {2}\, t \right ) \\ {} & \circ & \textrm {Use the initial condition}\hspace {3pt} y^{\prime }{\raise{-0.36em}{\Big |}}{\mstack {}{_{\left \{t \hiderel {=}0\right \}}}}=0 \\ {} & {} & 0=-2+c_{2} \\ {} & \circ & \textrm {Solve for}\hspace {3pt} c_{1} \hspace {3pt}\textrm {and}\hspace {3pt} c_{2} \\ {} & {} & \left \{c_{1} =10, c_{2} =2\right \} \\ {} & \circ & \textrm {Substitute constant values into general solution and simplify}\hspace {3pt} \\ {} & {} & y=10 \cos \left (t \right )+2 \sin \left (t \right )-\sqrt {2}\, \sin \left (\sqrt {2}\, t \right ) \\ \bullet & {} & \textrm {Solution to the IVP}\hspace {3pt} \\ {} & {} & y=10 \cos \left (t \right )+2 \sin \left (t \right )-\sqrt {2}\, \sin \left (\sqrt {2}\, t \right ) \end {array} \]

Maple trace

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying high order exact linear fully integrable 
trying differential order: 2; linear nonhomogeneous with symmetry [0,1] 
trying a double symmetry of the form [xi=0, eta=F(x)] 
-> Try solving first the homogeneous part of the ODE 
   checking if the LODE has constant coefficients 
   <- constant coefficients successful 
<- solving first the homogeneous part of the ODE successful`
 

Solution by Maple

Time used: 1.765 (sec). Leaf size: 24

dsolve([diff(y(t),t$2)+y(t)=sqrt(2)*sin(sqrt(2)*t),y(0) = 10, D(y)(0) = 0],y(t), singsol=all)
 

\[ y \left (t \right ) = -\sqrt {2}\, \sin \left (\sqrt {2}\, t \right )+10 \cos \left (t \right )+2 \sin \left (t \right ) \]

Solution by Mathematica

Time used: 0.031 (sec). Leaf size: 29

DSolve[{y''[t]+y[t]==Sqrt[2]*Sin[Sqrt[2]*t],{y[0]==10,y'[0]==0}},y[t],t,IncludeSingularSolutions -> True]
 

\[ y(t)\to 2 \sin (t)-\sqrt {2} \sin \left (\sqrt {2} t\right )+10 \cos (t) \]