2.1 problem 1

Internal problem ID [6584]
Internal file name [OUTPUT/5832_Sunday_June_05_2022_03_56_31_PM_17749144/index.tex]

Book: DIFFERENTIAL EQUATIONS with Boundary Value Problems. DENNIS G. ZILL, WARREN S. WRIGHT, MICHAEL R. CULLEN. Brooks/Cole. Boston, MA. 2013. 8th edition.
Section: CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS. 6.3 SOLUTIONS ABOUT SINGULAR POINTS. EXERCISES 6.3. Page 255
Problem number: 1.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode", "second order series method. Irregular singular point"

Maple gives the following as the ode type

[[_Emden, _Fowler]]

Unable to solve or complete the solution.

\[ \boxed {x^{3} y^{\prime \prime }+4 x^{2} y^{\prime }+3 y=0} \] With the expansion point for the power series method at \(x = 0\).

The type of the expansion point is first determined. This is done on the homogeneous part of the ODE. \[ x^{3} y^{\prime \prime }+4 x^{2} y^{\prime }+3 y = 0 \] The following is summary of singularities for the above ode. Writing the ode as \begin {align*} y^{\prime \prime }+p(x) y^{\prime } + q(x) y &=0 \end {align*}

Where \begin {align*} p(x) &= \frac {4}{x}\\ q(x) &= \frac {3}{x^{3}}\\ \end {align*}

Table 6: Table \(p(x),q(x)\) singularites.
\(p(x)=\frac {4}{x}\)
singularity type
\(x = 0\) \(\text {``regular''}\)
\(q(x)=\frac {3}{x^{3}}\)
singularity type
\(x = 0\) \(\text {``irregular''}\)

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : \([\infty ]\)

Irregular singular points : \([0]\)

Since \(x = 0\) is not an ordinary point, then we will now check if it is a regular singular point. Unable to solve since \(x = 0\) is not regular singular point. Terminating.

Verification of solutions N/A

Maple trace

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
trying a symmetry of the form [xi=0, eta=F(x)] 
checking if the LODE is missing y 
-> Trying a Liouvillian solution using Kovacics algorithm 
<- No Liouvillian solutions exists 
-> Trying a solution in terms of special functions: 
   -> Bessel 
   <- Bessel successful 
<- special function solution successful`
 

Solution by Maple

Order:=8; 
dsolve(x^3*diff(y(x),x$2)+4*x^2*diff(y(x),x)+3*y(x)=0,y(x),type='series',x=0);
 

\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.089 (sec). Leaf size: 374

AsymptoticDSolveValue[x^3*y''[x]+4*x^2*y'[x]+3*y[x]==0,y[x],{x,0,7}]
 

\[ y(x)\to \frac {c_1 e^{-\frac {2 i \sqrt {3}}{\sqrt {x}}} \left (-\frac {9447234753831875 i \sqrt {3} x^{13/2}}{4611686018427387904}+\frac {3806522094375 i \sqrt {3} x^{11/2}}{4503599627370496}-\frac {14315125825 i x^{9/2}}{8796093022208 \sqrt {3}}+\frac {8083075 i x^{7/2}}{4294967296 \sqrt {3}}-\frac {15015 i \sqrt {3} x^{5/2}}{8388608}+\frac {385 i \sqrt {3} x^{3/2}}{8192}+\frac {935276240629355625 x^7}{147573952589676412928}-\frac {625538464175625 x^6}{288230376151711744}+\frac {930483178625 x^5}{844424930131968}-\frac {509233725 x^4}{549755813888}+\frac {425425 x^3}{268435456}-\frac {5005 x^2}{524288}-\frac {315 x}{512}-\frac {35 i \sqrt {x}}{16 \sqrt {3}}+1\right )}{x^{5/4}}+\frac {c_2 e^{\frac {2 i \sqrt {3}}{\sqrt {x}}} \left (\frac {9447234753831875 i \sqrt {3} x^{13/2}}{4611686018427387904}-\frac {3806522094375 i \sqrt {3} x^{11/2}}{4503599627370496}+\frac {14315125825 i x^{9/2}}{8796093022208 \sqrt {3}}-\frac {8083075 i x^{7/2}}{4294967296 \sqrt {3}}+\frac {15015 i \sqrt {3} x^{5/2}}{8388608}-\frac {385 i \sqrt {3} x^{3/2}}{8192}+\frac {935276240629355625 x^7}{147573952589676412928}-\frac {625538464175625 x^6}{288230376151711744}+\frac {930483178625 x^5}{844424930131968}-\frac {509233725 x^4}{549755813888}+\frac {425425 x^3}{268435456}-\frac {5005 x^2}{524288}-\frac {315 x}{512}+\frac {35 i \sqrt {x}}{16 \sqrt {3}}+1\right )}{x^{5/4}} \]