3.12 problem 14

3.12.1 Solving as second order bessel ode ode
3.12.2 Maple step by step solution

Internal problem ID [6630]
Internal file name [OUTPUT/5878_Sunday_June_05_2022_03_59_33_PM_65251362/index.tex]

Book: DIFFERENTIAL EQUATIONS with Boundary Value Problems. DENNIS G. ZILL, WARREN S. WRIGHT, MICHAEL R. CULLEN. Brooks/Cole. Boston, MA. 2013. 8th edition.
Section: CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS. 6.4 SPECIAL FUNCTIONS. EXERCISES 6.4. Page 267
Problem number: 14.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode"

Maple gives the following as the ode type

[_Lienard]

\[ \boxed {x y^{\prime \prime }+3 y^{\prime }+y x=0} \]

3.12.1 Solving as second order bessel ode ode

Writing the ode as \begin {align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +y x^{2} = 0\tag {1} \end {align*}

Bessel ode has the form \begin {align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (-n^{2}+x^{2}\right ) y = 0\tag {2} \end {align*}

The generalized form of Bessel ode is given by Bowman (1958) as the following \begin {align*} x^{2} y^{\prime \prime }+\left (1-2 \alpha \right ) x y^{\prime }+\left (\beta ^{2} \gamma ^{2} x^{2 \gamma }-n^{2} \gamma ^{2}+\alpha ^{2}\right ) y = 0\tag {3} \end {align*}

With the standard solution \begin {align*} y&=x^{\alpha } \left (c_{1} \operatorname {BesselJ}\left (n , \beta \,x^{\gamma }\right )+c_{2} \operatorname {BesselY}\left (n , \beta \,x^{\gamma }\right )\right )\tag {4} \end {align*}

Comparing (3) to (1) and solving for \(\alpha ,\beta ,n,\gamma \) gives \begin {align*} \alpha &= -1\\ \beta &= 1\\ n &= 1\\ \gamma &= 1 \end {align*}

Substituting all the above into (4) gives the solution as \begin {align*} y = \frac {c_{1} \operatorname {BesselJ}\left (1, x\right )}{x}+\frac {c_{2} \operatorname {BesselY}\left (1, x\right )}{x} \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= \frac {c_{1} \operatorname {BesselJ}\left (1, x\right )}{x}+\frac {c_{2} \operatorname {BesselY}\left (1, x\right )}{x} \\ \end{align*}

Verification of solutions

\[ y = \frac {c_{1} \operatorname {BesselJ}\left (1, x\right )}{x}+\frac {c_{2} \operatorname {BesselY}\left (1, x\right )}{x} \] Verified OK.

3.12.2 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & x y^{\prime \prime }+3 y^{\prime }+y x =0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & y^{\prime \prime } \\ \bullet & {} & \textrm {Isolate 2nd derivative}\hspace {3pt} \\ {} & {} & y^{\prime \prime }=-\frac {3 y^{\prime }}{x}-y \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & y^{\prime \prime }+\frac {3 y^{\prime }}{x}+y=0 \\ \bullet & {} & \textrm {Simplify ODE}\hspace {3pt} \\ {} & {} & x^{2} y^{\prime \prime }+3 y^{\prime } x +y x^{2}=0 \\ \bullet & {} & \textrm {Make a change of variables}\hspace {3pt} \\ {} & {} & y=\frac {u \left (x \right )}{x} \\ \bullet & {} & \textrm {Compute}\hspace {3pt} y^{\prime } \\ {} & {} & y^{\prime }=-\frac {u \left (x \right )}{x^{2}}+\frac {u^{\prime }\left (x \right )}{x} \\ \bullet & {} & \textrm {Compute}\hspace {3pt} y^{\prime \prime } \\ {} & {} & y^{\prime \prime }=\frac {2 u \left (x \right )}{x^{3}}-\frac {2 u^{\prime }\left (x \right )}{x^{2}}+\frac {u^{\prime \prime }\left (x \right )}{x} \\ \bullet & {} & \textrm {Apply change of variables to the ODE}\hspace {3pt} \\ {} & {} & x^{2} u \left (x \right )+u^{\prime \prime }\left (x \right ) x^{2}+u^{\prime }\left (x \right ) x -u \left (x \right )=0 \\ \bullet & {} & \textrm {ODE is now of the Bessel form}\hspace {3pt} \\ \bullet & {} & \textrm {Solution to Bessel ODE}\hspace {3pt} \\ {} & {} & u \left (x \right )=c_{1} \mathit {BesselJ}\left (1, x\right )+c_{2} \mathit {BesselY}\left (1, x\right ) \\ \bullet & {} & \textrm {Make the change from}\hspace {3pt} y\hspace {3pt}\textrm {back to}\hspace {3pt} y \\ {} & {} & y=\frac {c_{1} \mathit {BesselJ}\left (1, x\right )+c_{2} \mathit {BesselY}\left (1, x\right )}{x} \end {array} \]

Maple trace

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
trying a symmetry of the form [xi=0, eta=F(x)] 
checking if the LODE is missing y 
-> Trying a Liouvillian solution using Kovacics algorithm 
<- No Liouvillian solutions exists 
-> Trying a solution in terms of special functions: 
   -> Bessel 
   <- Bessel successful 
<- special function solution successful`
 

Solution by Maple

Time used: 0.016 (sec). Leaf size: 19

dsolve(x*diff(y(x),x$2)+3*diff(y(x),x)+x*y(x)=0,y(x), singsol=all)
 

\[ y \left (x \right ) = \frac {c_{1} \operatorname {BesselJ}\left (1, x\right )+c_{2} \operatorname {BesselY}\left (1, x\right )}{x} \]

Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 22

DSolve[x*y''[x]+3*y'[x]+x*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to \frac {c_1 \operatorname {BesselJ}(1,x)+c_2 \operatorname {BesselY}(1,x)}{x} \]