7.16 problem 16

7.16.1 Maple step by step solution

Internal problem ID [2026]
Internal file name [OUTPUT/2026_Sunday_February_25_2024_06_45_28_AM_51073074/index.tex]

Book: Differential Equations by Alfred L. Nelson, Karl W. Folley, Max Coral. 3rd ed. DC heath. Boston. 1964
Section: Exercise 11, page 45
Problem number: 16.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type

[`y=_G(x,y')`]

Unable to solve or complete the solution.

\[ \boxed {\left (x \tan \left (y\right )^{2}-x \right ) y^{\prime }-\tan \left (y\right )=2 x^{2}} \] Unable to determine ODE type.

7.16.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left (x \tan \left (y\right )^{2}-x \right ) y^{\prime }-\tan \left (y\right )=2 x^{2} \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & y^{\prime }=\frac {2 x^{2}+\tan \left (y\right )}{x \tan \left (y\right )^{2}-x} \end {array} \]

Maple trace

`Methods for first order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying 1st order linear 
trying Bernoulli 
trying separable 
trying inverse linear 
trying homogeneous types: 
trying Chini 
differential order: 1; looking for linear symmetries 
trying exact 
Looking for potential symmetries 
trying inverse_Riccati 
trying an equivalence to an Abel ODE 
differential order: 1; trying a linearization to 2nd order 
--- trying a change of variables {x -> y(x), y(x) -> x} 
differential order: 1; trying a linearization to 2nd order 
trying 1st order ODE linearizable_by_differentiation 
--- Trying Lie symmetry methods, 1st order --- 
`, `-> Computing symmetries using: way = 3 
`, `-> Computing symmetries using: way = 4 
`, `-> Computing symmetries using: way = 5 
trying symmetry patterns for 1st order ODEs 
-> trying a symmetry pattern of the form [F(x)*G(y), 0] 
-> trying a symmetry pattern of the form [0, F(x)*G(y)] 
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] 
`, `-> Computing symmetries using: way = HINT 
   -> Calling odsolve with the ODE`, diff(y(x), x)-y(x)/x, y(x)`      *** Sublevel 2 *** 
      Methods for first order ODEs: 
      --- Trying classification methods --- 
      trying a quadrature 
      trying 1st order linear 
      <- 1st order linear successful 
   -> Calling odsolve with the ODE`, diff(y(x), x)+(1/2)*(2*y(x)*x+1)/x^2, y(x)`      *** Sublevel 2 *** 
      Methods for first order ODEs: 
      --- Trying classification methods --- 
      trying a quadrature 
      trying 1st order linear 
      <- 1st order linear successful 
   -> Calling odsolve with the ODE`, diff(y(x), x)+(1/2)*(2*y(x)*x-1)/x^2, y(x)`      *** Sublevel 2 *** 
      Methods for first order ODEs: 
      --- Trying classification methods --- 
      trying a quadrature 
      trying 1st order linear 
      <- 1st order linear successful 
`, `-> Computing symmetries using: way = HINT 
   -> Calling odsolve with the ODE`, diff(y(x), x)+y(x)*(1+tan(x)^2)^2/(tan(x)*(tan(x)-1)*(tan(x)+1)), y(x)`      *** Sublevel 2 *** 
      Methods for first order ODEs: 
      --- Trying classification methods --- 
      trying a quadrature 
      trying 1st order linear 
      <- 1st order linear successful 
   -> Calling odsolve with the ODE`, diff(y(x), x)+2*(tan(x)^3*y(x)+tan(x)*y(x)-tan(x)^2+1)/((tan(x)-1)*(tan(x)+1)), y(x)`      *** 
      Methods for first order ODEs: 
      --- Trying classification methods --- 
      trying a quadrature 
      trying 1st order linear 
      <- 1st order linear successful 
-> trying a symmetry pattern of the form [F(x),G(x)] 
-> trying a symmetry pattern of the form [F(y),G(y)] 
-> trying a symmetry pattern of the form [F(x)+G(y), 0] 
-> trying a symmetry pattern of the form [0, F(x)+G(y)] 
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)] 
-> trying a symmetry pattern of conformal type`
 

Solution by Maple

dsolve((x*tan(y(x))^2-x)*diff(y(x),x)=(2*x^2+tan(y(x))),y(x), singsol=all)
 

\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[(x*Tan[y[x]]^2-x)*y'[x]==(2*x^2+Tan[y[x]]),y[x],x,IncludeSingularSolutions -> True]
 

Not solved