23.15 problem 19

23.15.1 Maple step by step solution

Internal problem ID [2394]
Internal file name [OUTPUT/2394_Tuesday_February_27_2024_08_36_50_AM_47576210/index.tex]

Book: Differential Equations by Alfred L. Nelson, Karl W. Folley, Max Coral. 3rd ed. DC heath. Boston. 1964
Section: Exercise 41, page 195
Problem number: 19.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

\[ \boxed {4 x^{2} \left (x +1\right ) y^{\prime \prime }-5 y^{\prime } x +2 y=0} \] With the expansion point for the power series method at \(x = 0\).

The type of the expansion point is first determined. This is done on the homogeneous part of the ODE. \[ \left (4 x^{3}+4 x^{2}\right ) y^{\prime \prime }-5 y^{\prime } x +2 y = 0 \] The following is summary of singularities for the above ode. Writing the ode as \begin {align*} y^{\prime \prime }+p(x) y^{\prime } + q(x) y &=0 \end {align*}

Where \begin {align*} p(x) &= -\frac {5}{4 x \left (x +1\right )}\\ q(x) &= \frac {1}{2 x^{2} \left (x +1\right )}\\ \end {align*}

Table 333: Table \(p(x),q(x)\) singularites.
\(p(x)=-\frac {5}{4 x \left (x +1\right )}\)
singularity type
\(x = -1\) \(\text {``regular''}\)
\(x = 0\) \(\text {``regular''}\)
\(q(x)=\frac {1}{2 x^{2} \left (x +1\right )}\)
singularity type
\(x = -1\) \(\text {``regular''}\)
\(x = 0\) \(\text {``regular''}\)

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : \([-1, 0, \infty ]\)

Irregular singular points : \([]\)

Since \(x = 0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be \[ 4 x^{2} \left (x +1\right ) y^{\prime \prime }-5 y^{\prime } x +2 y = 0 \] Let the solution be represented as Frobenius power series of the form \[ y = \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r} \] Then \begin{align*} y^{\prime } &= \moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} x^{n +r -1} \\ y^{\prime \prime } &= \moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) \left (n +r -1\right ) a_{n} x^{n +r -2} \\ \end{align*} Substituting the above back into the ode gives \begin{equation} \tag{1} 4 x^{2} \left (x +1\right ) \left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) \left (n +r -1\right ) a_{n} x^{n +r -2}\right )-5 \left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} x^{n +r -1}\right ) x +2 \left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r}\right ) = 0 \end{equation} Which simplifies to \begin{equation} \tag{2A} \left (\moverset {\infty }{\munderset {n =0}{\sum }}4 x^{1+n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}4 x^{n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )\right )+\moverset {\infty }{\munderset {n =0}{\sum }}\left (-5 x^{n +r} a_{n} \left (n +r \right )\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}2 a_{n} x^{n +r}\right ) = 0 \end{equation} The next step is to make all powers of \(x\) be \(n +r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n +r}\) and adjusting the power and the corresponding index gives \begin{align*} \moverset {\infty }{\munderset {n =0}{\sum }}4 x^{1+n +r} a_{n} \left (n +r \right ) \left (n +r -1\right ) &= \moverset {\infty }{\munderset {n =1}{\sum }}4 a_{n -1} \left (n +r -1\right ) \left (n +r -2\right ) x^{n +r} \\ \end{align*} Substituting all the above in Eq (2A) gives the following equation where now all powers of \(x\) are the same and equal to \(n +r\). \begin{equation} \tag{2B} \left (\moverset {\infty }{\munderset {n =1}{\sum }}4 a_{n -1} \left (n +r -1\right ) \left (n +r -2\right ) x^{n +r}\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}4 x^{n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )\right )+\moverset {\infty }{\munderset {n =0}{\sum }}\left (-5 x^{n +r} a_{n} \left (n +r \right )\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}2 a_{n} x^{n +r}\right ) = 0 \end{equation} The indicial equation is obtained from \(n = 0\). From Eq (2B) this gives \[ 4 x^{n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )-5 x^{n +r} a_{n} \left (n +r \right )+2 a_{n} x^{n +r} = 0 \] When \(n = 0\) the above becomes \[ 4 x^{r} a_{0} r \left (-1+r \right )-5 x^{r} a_{0} r +2 a_{0} x^{r} = 0 \] Or \[ \left (4 x^{r} r \left (-1+r \right )-5 x^{r} r +2 x^{r}\right ) a_{0} = 0 \] Since \(a_{0}\neq 0\) then the above simplifies to \[ \left (4 r^{2}-9 r +2\right ) x^{r} = 0 \] Since the above is true for all \(x\) then the indicial equation becomes \[ 4 r^{2}-9 r +2 = 0 \] Solving for \(r\) gives the roots of the indicial equation as \begin {align*} r_1 &= 2\\ r_2 &= {\frac {1}{4}} \end {align*}

Since \(a_{0}\neq 0\) then the indicial equation becomes \[ \left (4 r^{2}-9 r +2\right ) x^{r} = 0 \] Solving for \(r\) gives the roots of the indicial equation as \(\left [2, {\frac {1}{4}}\right ]\).

Since \(r_1 - r_2 = {\frac {7}{4}}\) is not an integer, then we can construct two linearly independent solutions \begin {align*} y_{1}\left (x \right ) &= x^{r_{1}} \left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n}\right )\\ y_{2}\left (x \right ) &= x^{r_{2}} \left (\moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n}\right ) \end {align*}

Or \begin {align*} y_{1}\left (x \right ) &= \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +2}\\ y_{2}\left (x \right ) &= \moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n +\frac {1}{4}} \end {align*}

We start by finding \(y_{1}\left (x \right )\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n = 0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0} = 1\). For \(1\le n\) the recursive equation is \begin{equation} \tag{3} 4 a_{n -1} \left (n +r -1\right ) \left (n +r -2\right )+4 a_{n} \left (n +r \right ) \left (n +r -1\right )-5 a_{n} \left (n +r \right )+2 a_{n} = 0 \end{equation} Solving for \(a_{n}\) from recursive equation (4) gives \[ a_{n} = -\frac {4 \left (n +r -1\right ) a_{n -1}}{4 n +4 r -1}\tag {4} \] Which for the root \(r = 2\) becomes \[ a_{n} = -\frac {4 \left (1+n \right ) a_{n -1}}{4 n +7}\tag {5} \] At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r = 2\) and after as more terms are found using the above recursive equation.

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)

For \(n = 1\), using the above recursive equation gives \[ a_{1}=-\frac {4 r}{3+4 r} \] Which for the root \(r = 2\) becomes \[ a_{1}=-{\frac {8}{11}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(-\frac {4 r}{3+4 r}\) \(-{\frac {8}{11}}\)

For \(n = 2\), using the above recursive equation gives \[ a_{2}=\frac {16 r \left (1+r \right )}{16 r^{2}+40 r +21} \] Which for the root \(r = 2\) becomes \[ a_{2}={\frac {32}{55}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(-\frac {4 r}{3+4 r}\) \(-{\frac {8}{11}}\)
\(a_{2}\) \(\frac {16 r \left (1+r \right )}{16 r^{2}+40 r +21}\) \(\frac {32}{55}\)

For \(n = 3\), using the above recursive equation gives \[ a_{3}=-\frac {64 \left (1+r \right ) r \left (2+r \right )}{64 r^{3}+336 r^{2}+524 r +231} \] Which for the root \(r = 2\) becomes \[ a_{3}=-{\frac {512}{1045}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(-\frac {4 r}{3+4 r}\) \(-{\frac {8}{11}}\)
\(a_{2}\) \(\frac {16 r \left (1+r \right )}{16 r^{2}+40 r +21}\) \(\frac {32}{55}\)
\(a_{3}\) \(-\frac {64 \left (1+r \right ) r \left (2+r \right )}{64 r^{3}+336 r^{2}+524 r +231}\) \(-{\frac {512}{1045}}\)

For \(n = 4\), using the above recursive equation gives \[ a_{4}=\frac {256 r \left (1+r \right ) \left (2+r \right ) \left (3+r \right )}{256 r^{4}+2304 r^{3}+7136 r^{2}+8784 r +3465} \] Which for the root \(r = 2\) becomes \[ a_{4}={\frac {2048}{4807}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(-\frac {4 r}{3+4 r}\) \(-{\frac {8}{11}}\)
\(a_{2}\) \(\frac {16 r \left (1+r \right )}{16 r^{2}+40 r +21}\) \(\frac {32}{55}\)
\(a_{3}\) \(-\frac {64 \left (1+r \right ) r \left (2+r \right )}{64 r^{3}+336 r^{2}+524 r +231}\) \(-{\frac {512}{1045}}\)
\(a_{4}\) \(\frac {256 r \left (1+r \right ) \left (2+r \right ) \left (3+r \right )}{256 r^{4}+2304 r^{3}+7136 r^{2}+8784 r +3465}\) \(\frac {2048}{4807}\)

For \(n = 5\), using the above recursive equation gives \[ a_{5}=-\frac {1024 r \left (1+r \right ) \left (2+r \right ) \left (3+r \right ) \left (4+r \right )}{1024 r^{5}+14080 r^{4}+72320 r^{3}+170720 r^{2}+180756 r +65835} \] Which for the root \(r = 2\) becomes \[ a_{5}=-{\frac {16384}{43263}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(-\frac {4 r}{3+4 r}\) \(-{\frac {8}{11}}\)
\(a_{2}\) \(\frac {16 r \left (1+r \right )}{16 r^{2}+40 r +21}\) \(\frac {32}{55}\)
\(a_{3}\) \(-\frac {64 \left (1+r \right ) r \left (2+r \right )}{64 r^{3}+336 r^{2}+524 r +231}\) \(-{\frac {512}{1045}}\)
\(a_{4}\) \(\frac {256 r \left (1+r \right ) \left (2+r \right ) \left (3+r \right )}{256 r^{4}+2304 r^{3}+7136 r^{2}+8784 r +3465}\) \(\frac {2048}{4807}\)
\(a_{5}\) \(-\frac {1024 r \left (1+r \right ) \left (2+r \right ) \left (3+r \right ) \left (4+r \right )}{1024 r^{5}+14080 r^{4}+72320 r^{3}+170720 r^{2}+180756 r +65835}\) \(-{\frac {16384}{43263}}\)

Using the above table, then the solution \(y_{1}\left (x \right )\) is \begin {align*} y_{1}\left (x \right )&= x^{2} \left (a_{0}+a_{1} x +a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}\dots \right ) \\ &= x^{2} \left (1-\frac {8 x}{11}+\frac {32 x^{2}}{55}-\frac {512 x^{3}}{1045}+\frac {2048 x^{4}}{4807}-\frac {16384 x^{5}}{43263}+O\left (x^{6}\right )\right ) \end {align*}

Now the second solution \(y_{2}\left (x \right )\) is found. Eq (2B) derived above is now used to find all \(b_{n}\) coefficients. The case \(n = 0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0} = 1\). For \(1\le n\) the recursive equation is \begin{equation} \tag{3} 4 b_{n -1} \left (n +r -1\right ) \left (n +r -2\right )+4 b_{n} \left (n +r \right ) \left (n +r -1\right )-5 b_{n} \left (n +r \right )+2 b_{n} = 0 \end{equation} Solving for \(b_{n}\) from recursive equation (4) gives \[ b_{n} = -\frac {4 \left (n +r -1\right ) b_{n -1}}{4 n +4 r -1}\tag {4} \] Which for the root \(r = {\frac {1}{4}}\) becomes \[ b_{n} = -\frac {\left (4 n -3\right ) b_{n -1}}{4 n}\tag {5} \] At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r = {\frac {1}{4}}\) and after as more terms are found using the above recursive equation.

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)

For \(n = 1\), using the above recursive equation gives \[ b_{1}=-\frac {4 r}{3+4 r} \] Which for the root \(r = {\frac {1}{4}}\) becomes \[ b_{1}=-{\frac {1}{4}} \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(-\frac {4 r}{3+4 r}\) \(-{\frac {1}{4}}\)

For \(n = 2\), using the above recursive equation gives \[ b_{2}=\frac {16 r \left (1+r \right )}{16 r^{2}+40 r +21} \] Which for the root \(r = {\frac {1}{4}}\) becomes \[ b_{2}={\frac {5}{32}} \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(-\frac {4 r}{3+4 r}\) \(-{\frac {1}{4}}\)
\(b_{2}\) \(\frac {16 r \left (1+r \right )}{16 r^{2}+40 r +21}\) \(\frac {5}{32}\)

For \(n = 3\), using the above recursive equation gives \[ b_{3}=-\frac {64 \left (1+r \right ) r \left (2+r \right )}{64 r^{3}+336 r^{2}+524 r +231} \] Which for the root \(r = {\frac {1}{4}}\) becomes \[ b_{3}=-{\frac {15}{128}} \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(-\frac {4 r}{3+4 r}\) \(-{\frac {1}{4}}\)
\(b_{2}\) \(\frac {16 r \left (1+r \right )}{16 r^{2}+40 r +21}\) \(\frac {5}{32}\)
\(b_{3}\) \(-\frac {64 \left (1+r \right ) r \left (2+r \right )}{64 r^{3}+336 r^{2}+524 r +231}\) \(-{\frac {15}{128}}\)

For \(n = 4\), using the above recursive equation gives \[ b_{4}=\frac {256 r \left (1+r \right ) \left (2+r \right ) \left (3+r \right )}{256 r^{4}+2304 r^{3}+7136 r^{2}+8784 r +3465} \] Which for the root \(r = {\frac {1}{4}}\) becomes \[ b_{4}={\frac {195}{2048}} \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(-\frac {4 r}{3+4 r}\) \(-{\frac {1}{4}}\)
\(b_{2}\) \(\frac {16 r \left (1+r \right )}{16 r^{2}+40 r +21}\) \(\frac {5}{32}\)
\(b_{3}\) \(-\frac {64 \left (1+r \right ) r \left (2+r \right )}{64 r^{3}+336 r^{2}+524 r +231}\) \(-{\frac {15}{128}}\)
\(b_{4}\) \(\frac {256 r \left (1+r \right ) \left (2+r \right ) \left (3+r \right )}{256 r^{4}+2304 r^{3}+7136 r^{2}+8784 r +3465}\) \(\frac {195}{2048}\)

For \(n = 5\), using the above recursive equation gives \[ b_{5}=-\frac {1024 r \left (1+r \right ) \left (2+r \right ) \left (3+r \right ) \left (4+r \right )}{1024 r^{5}+14080 r^{4}+72320 r^{3}+170720 r^{2}+180756 r +65835} \] Which for the root \(r = {\frac {1}{4}}\) becomes \[ b_{5}=-{\frac {663}{8192}} \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(-\frac {4 r}{3+4 r}\) \(-{\frac {1}{4}}\)
\(b_{2}\) \(\frac {16 r \left (1+r \right )}{16 r^{2}+40 r +21}\) \(\frac {5}{32}\)
\(b_{3}\) \(-\frac {64 \left (1+r \right ) r \left (2+r \right )}{64 r^{3}+336 r^{2}+524 r +231}\) \(-{\frac {15}{128}}\)
\(b_{4}\) \(\frac {256 r \left (1+r \right ) \left (2+r \right ) \left (3+r \right )}{256 r^{4}+2304 r^{3}+7136 r^{2}+8784 r +3465}\) \(\frac {195}{2048}\)
\(b_{5}\) \(-\frac {1024 r \left (1+r \right ) \left (2+r \right ) \left (3+r \right ) \left (4+r \right )}{1024 r^{5}+14080 r^{4}+72320 r^{3}+170720 r^{2}+180756 r +65835}\) \(-{\frac {663}{8192}}\)

Using the above table, then the solution \(y_{2}\left (x \right )\) is \begin {align*} y_{2}\left (x \right )&= x^{2} \left (b_{0}+b_{1} x +b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6}\dots \right ) \\ &= x^{\frac {1}{4}} \left (1-\frac {x}{4}+\frac {5 x^{2}}{32}-\frac {15 x^{3}}{128}+\frac {195 x^{4}}{2048}-\frac {663 x^{5}}{8192}+O\left (x^{6}\right )\right ) \end {align*}

Therefore the homogeneous solution is \begin{align*} y_h(x) &= c_{1} y_{1}\left (x \right )+c_{2} y_{2}\left (x \right ) \\ &= c_{1} x^{2} \left (1-\frac {8 x}{11}+\frac {32 x^{2}}{55}-\frac {512 x^{3}}{1045}+\frac {2048 x^{4}}{4807}-\frac {16384 x^{5}}{43263}+O\left (x^{6}\right )\right ) + c_{2} x^{\frac {1}{4}} \left (1-\frac {x}{4}+\frac {5 x^{2}}{32}-\frac {15 x^{3}}{128}+\frac {195 x^{4}}{2048}-\frac {663 x^{5}}{8192}+O\left (x^{6}\right )\right ) \\ \end{align*} Hence the final solution is \begin{align*} y &= y_h \\ &= c_{1} x^{2} \left (1-\frac {8 x}{11}+\frac {32 x^{2}}{55}-\frac {512 x^{3}}{1045}+\frac {2048 x^{4}}{4807}-\frac {16384 x^{5}}{43263}+O\left (x^{6}\right )\right )+c_{2} x^{\frac {1}{4}} \left (1-\frac {x}{4}+\frac {5 x^{2}}{32}-\frac {15 x^{3}}{128}+\frac {195 x^{4}}{2048}-\frac {663 x^{5}}{8192}+O\left (x^{6}\right )\right ) \\ \end{align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= c_{1} x^{2} \left (1-\frac {8 x}{11}+\frac {32 x^{2}}{55}-\frac {512 x^{3}}{1045}+\frac {2048 x^{4}}{4807}-\frac {16384 x^{5}}{43263}+O\left (x^{6}\right )\right )+c_{2} x^{\frac {1}{4}} \left (1-\frac {x}{4}+\frac {5 x^{2}}{32}-\frac {15 x^{3}}{128}+\frac {195 x^{4}}{2048}-\frac {663 x^{5}}{8192}+O\left (x^{6}\right )\right ) \\ \end{align*}

Verification of solutions

\[ y = c_{1} x^{2} \left (1-\frac {8 x}{11}+\frac {32 x^{2}}{55}-\frac {512 x^{3}}{1045}+\frac {2048 x^{4}}{4807}-\frac {16384 x^{5}}{43263}+O\left (x^{6}\right )\right )+c_{2} x^{\frac {1}{4}} \left (1-\frac {x}{4}+\frac {5 x^{2}}{32}-\frac {15 x^{3}}{128}+\frac {195 x^{4}}{2048}-\frac {663 x^{5}}{8192}+O\left (x^{6}\right )\right ) \] Verified OK.

23.15.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & 4 x^{2} \left (x +1\right ) y^{\prime \prime }-5 y^{\prime } x +2 y=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & y^{\prime \prime } \\ \bullet & {} & \textrm {Isolate 2nd derivative}\hspace {3pt} \\ {} & {} & y^{\prime \prime }=\frac {5 y^{\prime }}{4 x \left (x +1\right )}-\frac {y}{2 x^{2} \left (x +1\right )} \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & y^{\prime \prime }-\frac {5 y^{\prime }}{4 x \left (x +1\right )}+\frac {y}{2 x^{2} \left (x +1\right )}=0 \\ \square & {} & \textrm {Check to see if}\hspace {3pt} x_{0}\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & \circ & \textrm {Define functions}\hspace {3pt} \\ {} & {} & \left [P_{2}\left (x \right )=-\frac {5}{4 x \left (x +1\right )}, P_{3}\left (x \right )=\frac {1}{2 x^{2} \left (x +1\right )}\right ] \\ {} & \circ & \left (x +1\right )\cdot P_{2}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =-1 \\ {} & {} & \left (\left (x +1\right )\cdot P_{2}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}-1}}}=\frac {5}{4} \\ {} & \circ & \left (x +1\right )^{2}\cdot P_{3}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =-1 \\ {} & {} & \left (\left (x +1\right )^{2}\cdot P_{3}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}-1}}}=0 \\ {} & \circ & x =-1\textrm {is a regular singular point}\hspace {3pt} \\ & {} & \textrm {Check to see if}\hspace {3pt} x_{0}\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & {} & x_{0}=-1 \\ \bullet & {} & \textrm {Multiply by denominators}\hspace {3pt} \\ {} & {} & 4 x^{2} \left (x +1\right ) y^{\prime \prime }-5 y^{\prime } x +2 y=0 \\ \bullet & {} & \textrm {Change variables using}\hspace {3pt} x =u -1\hspace {3pt}\textrm {so that the regular singular point is at}\hspace {3pt} u =0 \\ {} & {} & \left (4 u^{3}-8 u^{2}+4 u \right ) \left (\frac {d^{2}}{d u^{2}}y \left (u \right )\right )+\left (-5 u +5\right ) \left (\frac {d}{d u}y \left (u \right )\right )+2 y \left (u \right )=0 \\ \bullet & {} & \textrm {Assume series solution for}\hspace {3pt} y \left (u \right ) \\ {} & {} & y \left (u \right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} u^{k +r} \\ \square & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & \circ & \textrm {Convert}\hspace {3pt} u^{m}\cdot \left (\frac {d}{d u}y \left (u \right )\right )\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =0..1 \\ {} & {} & u^{m}\cdot \left (\frac {d}{d u}y \left (u \right )\right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) u^{k +r -1+m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +1-m \\ {} & {} & u^{m}\cdot \left (\frac {d}{d u}y \left (u \right )\right )=\moverset {\infty }{\munderset {k =-1+m}{\sum }}a_{k +1-m} \left (k +1-m +r \right ) u^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} u^{m}\cdot \left (\frac {d^{2}}{d u^{2}}y \left (u \right )\right )\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =1..3 \\ {} & {} & u^{m}\cdot \left (\frac {d^{2}}{d u^{2}}y \left (u \right )\right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) \left (k +r -1\right ) u^{k +r -2+m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +2-m \\ {} & {} & u^{m}\cdot \left (\frac {d^{2}}{d u^{2}}y \left (u \right )\right )=\moverset {\infty }{\munderset {k =-2+m}{\sum }}a_{k +2-m} \left (k +2-m +r \right ) \left (k +1-m +r \right ) u^{k +r} \\ & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & {} & a_{0} r \left (1+4 r \right ) u^{-1+r}+\left (a_{1} \left (1+r \right ) \left (5+4 r \right )-a_{0} \left (8 r^{2}-3 r -2\right )\right ) u^{r}+\left (\moverset {\infty }{\munderset {k =1}{\sum }}\left (a_{k +1} \left (k +1+r \right ) \left (4 k +5+4 r \right )-a_{k} \left (8 k^{2}+16 k r +8 r^{2}-3 k -3 r -2\right )+4 a_{k -1} \left (k +r -1\right ) \left (k -2+r \right )\right ) u^{k +r}\right )=0 \\ \bullet & {} & a_{0}\textrm {cannot be 0 by assumption, giving the indicial equation}\hspace {3pt} \\ {} & {} & r \left (1+4 r \right )=0 \\ \bullet & {} & \textrm {Values of r that satisfy the indicial equation}\hspace {3pt} \\ {} & {} & r \in \left \{0, -\frac {1}{4}\right \} \\ \bullet & {} & \textrm {Each term must be 0}\hspace {3pt} \\ {} & {} & a_{1} \left (1+r \right ) \left (5+4 r \right )-a_{0} \left (8 r^{2}-3 r -2\right )=0 \\ \bullet & {} & \textrm {Each term in the series must be 0, giving the recursion relation}\hspace {3pt} \\ {} & {} & 4 \left (-2 a_{k}+a_{k -1}+a_{k +1}\right ) k^{2}+\left (8 \left (-2 a_{k}+a_{k -1}+a_{k +1}\right ) r +3 a_{k}-12 a_{k -1}+9 a_{k +1}\right ) k +4 \left (-2 a_{k}+a_{k -1}+a_{k +1}\right ) r^{2}+3 \left (a_{k}-4 a_{k -1}+3 a_{k +1}\right ) r +2 a_{k}+8 a_{k -1}+5 a_{k +1}=0 \\ \bullet & {} & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +1 \\ {} & {} & 4 \left (-2 a_{k +1}+a_{k}+a_{k +2}\right ) \left (k +1\right )^{2}+\left (8 \left (-2 a_{k +1}+a_{k}+a_{k +2}\right ) r +3 a_{k +1}-12 a_{k}+9 a_{k +2}\right ) \left (k +1\right )+4 \left (-2 a_{k +1}+a_{k}+a_{k +2}\right ) r^{2}+3 \left (a_{k +1}-4 a_{k}+3 a_{k +2}\right ) r +2 a_{k +1}+8 a_{k}+5 a_{k +2}=0 \\ \bullet & {} & \textrm {Recursion relation that defines series solution to ODE}\hspace {3pt} \\ {} & {} & a_{k +2}=-\frac {4 k^{2} a_{k}-8 k^{2} a_{k +1}+8 k r a_{k}-16 k r a_{k +1}+4 r^{2} a_{k}-8 r^{2} a_{k +1}-4 k a_{k}-13 k a_{k +1}-4 r a_{k}-13 r a_{k +1}-3 a_{k +1}}{4 k^{2}+8 k r +4 r^{2}+17 k +17 r +18} \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =0 \\ {} & {} & a_{k +2}=-\frac {4 k^{2} a_{k}-8 k^{2} a_{k +1}-4 k a_{k}-13 k a_{k +1}-3 a_{k +1}}{4 k^{2}+17 k +18} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =0 \\ {} & {} & \left [y \left (u \right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} u^{k}, a_{k +2}=-\frac {4 k^{2} a_{k}-8 k^{2} a_{k +1}-4 k a_{k}-13 k a_{k +1}-3 a_{k +1}}{4 k^{2}+17 k +18}, 5 a_{1}+2 a_{0}=0\right ] \\ \bullet & {} & \textrm {Revert the change of variables}\hspace {3pt} u =x +1 \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (x +1\right )^{k}, a_{k +2}=-\frac {4 k^{2} a_{k}-8 k^{2} a_{k +1}-4 k a_{k}-13 k a_{k +1}-3 a_{k +1}}{4 k^{2}+17 k +18}, 5 a_{1}+2 a_{0}=0\right ] \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =-\frac {1}{4} \\ {} & {} & a_{k +2}=-\frac {4 k^{2} a_{k}-8 k^{2} a_{k +1}-6 k a_{k}-9 k a_{k +1}+\frac {5}{4} a_{k}-\frac {1}{4} a_{k +1}}{4 k^{2}+15 k +14} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =-\frac {1}{4} \\ {} & {} & \left [y \left (u \right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} u^{k -\frac {1}{4}}, a_{k +2}=-\frac {4 k^{2} a_{k}-8 k^{2} a_{k +1}-6 k a_{k}-9 k a_{k +1}+\frac {5}{4} a_{k}-\frac {1}{4} a_{k +1}}{4 k^{2}+15 k +14}, 3 a_{1}+\frac {3 a_{0}}{4}=0\right ] \\ \bullet & {} & \textrm {Revert the change of variables}\hspace {3pt} u =x +1 \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (x +1\right )^{k -\frac {1}{4}}, a_{k +2}=-\frac {4 k^{2} a_{k}-8 k^{2} a_{k +1}-6 k a_{k}-9 k a_{k +1}+\frac {5}{4} a_{k}-\frac {1}{4} a_{k +1}}{4 k^{2}+15 k +14}, 3 a_{1}+\frac {3 a_{0}}{4}=0\right ] \\ \bullet & {} & \textrm {Combine solutions and rename parameters}\hspace {3pt} \\ {} & {} & \left [y=\left (\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (x +1\right )^{k}\right )+\left (\moverset {\infty }{\munderset {k =0}{\sum }}b_{k} \left (x +1\right )^{k -\frac {1}{4}}\right ), a_{k +2}=-\frac {4 k^{2} a_{k}-8 k^{2} a_{k +1}-4 k a_{k}-13 k a_{k +1}-3 a_{k +1}}{4 k^{2}+17 k +18}, 5 a_{1}+2 a_{0}=0, b_{k +2}=-\frac {4 k^{2} b_{k}-8 k^{2} b_{k +1}-6 k b_{k}-9 k b_{k +1}+\frac {5}{4} b_{k}-\frac {1}{4} b_{k +1}}{4 k^{2}+15 k +14}, 3 b_{1}+\frac {3 b_{0}}{4}=0\right ] \end {array} \]

Maple trace Kovacic algorithm successful

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
trying a symmetry of the form [xi=0, eta=F(x)] 
checking if the LODE is missing y 
-> Trying a Liouvillian solution using Kovacics algorithm 
   A Liouvillian solution exists 
   Reducible group (found an exponential solution) 
   Group is reducible, not completely reducible 
   Solution has integrals. Trying a special function solution free of integrals... 
   -> Trying a solution in terms of special functions: 
      -> Bessel 
      -> elliptic 
      -> Legendre 
      -> Kummer 
         -> hyper3: Equivalence to 1F1 under a power @ Moebius 
      -> hypergeometric 
         -> heuristic approach 
         -> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius 
         <- hyper3 successful: received ODE is equivalent to the 2F1 ODE 
      <- hypergeometric successful 
   <- special function solution successful 
      -> Trying to convert hypergeometric functions to elementary form... 
      <- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals 
   <- Kovacics algorithm successful`
 

Solution by Maple

Time used: 0.015 (sec). Leaf size: 47

Order:=6; 
dsolve(4*x^2*(1+x)*diff(y(x),x$2)-5*x*diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);
 

\[ y \left (x \right ) = c_{1} x^{\frac {1}{4}} \left (1-\frac {1}{4} x +\frac {5}{32} x^{2}-\frac {15}{128} x^{3}+\frac {195}{2048} x^{4}-\frac {663}{8192} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+c_{2} x^{2} \left (1-\frac {8}{11} x +\frac {32}{55} x^{2}-\frac {512}{1045} x^{3}+\frac {2048}{4807} x^{4}-\frac {16384}{43263} x^{5}+\operatorname {O}\left (x^{6}\right )\right ) \]

Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 88

AsymptoticDSolveValue[4*x^2*(1+x)*y''[x]-5*x*y'[x]+2*y[x]==0,y[x],{x,0,5}]
 

\[ y(x)\to c_1 \left (-\frac {16384 x^5}{43263}+\frac {2048 x^4}{4807}-\frac {512 x^3}{1045}+\frac {32 x^2}{55}-\frac {8 x}{11}+1\right ) x^2+c_2 \left (-\frac {663 x^5}{8192}+\frac {195 x^4}{2048}-\frac {15 x^3}{128}+\frac {5 x^2}{32}-\frac {x}{4}+1\right ) \sqrt [4]{x} \]