12.9 problem 6(c)

12.9.1 Maple step by step solution

Internal problem ID [6345]
Internal file name [OUTPUT/5593_Sunday_June_05_2022_03_44_22_PM_15722899/index.tex]

Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.4. THE USE OF A KNOWN SOLUTION TO FIND ANOTHER. Page 74
Problem number: 6(c).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "reduction_of_order", "second_order_change_of_variable_on_y_method_1", "second_order_change_of_variable_on_y_method_2"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

\[ \boxed {x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y=0} \] Given that one solution of the ode is \begin {align*} y_1 &= x \end {align*}

Given one basis solution \(y_{1}\left (x \right )\), then the second basis solution is given by \[ y_{2}\left (x \right ) = y_{1} \left (\int \frac {{\mathrm e}^{-\left (\int p d x \right )}}{y_{1}^{2}}d x \right ) \] Where \(p(x)\) is the coefficient of \(y^{\prime }\) when the ode is written in the normal form \[ y^{\prime \prime }+p \left (x \right ) y^{\prime }+q \left (x \right ) y = f \left (x \right ) \] Looking at the ode to solve shows that \[ p \left (x \right ) = \frac {-x^{2}-2 x}{x^{2}} \] Therefore \begin{align*} y_{2}\left (x \right ) &= x \left (\int \frac {{\mathrm e}^{-\left (\int \frac {-x^{2}-2 x}{x^{2}}d x \right )}}{x^{2}}d x \right ) \\ y_{2}\left (x \right ) &= x \int \frac {{\mathrm e}^{x +2 \ln \left (x \right )}}{x^{2}} , dx \\ y_{2}\left (x \right ) &= x \left (\int {\mathrm e}^{x}d x \right ) \\ y_{2}\left (x \right ) &= x \,{\mathrm e}^{x} \\ \end{align*} Hence the solution is \begin{align*} y &= c_{1} y_{1}\left (x \right )+c_{2} y_{2}\left (x \right ) \\ &= c_{1} x +c_{2} x \,{\mathrm e}^{x} \\ \end{align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= c_{1} x +c_{2} x \,{\mathrm e}^{x} \\ \end{align*}

Verification of solutions

\[ y = c_{1} x +c_{2} x \,{\mathrm e}^{x} \] Verified OK.

12.9.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & x^{2} \left (\frac {d}{d x}y^{\prime }\right )+\left (-x^{2}-2 x \right ) y^{\prime }+\left (x +2\right ) y=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & \frac {d}{d x}y^{\prime } \\ \bullet & {} & \textrm {Isolate 2nd derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }=-\frac {\left (x +2\right ) y}{x^{2}}+\frac {\left (x +2\right ) y^{\prime }}{x} \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }-\frac {\left (x +2\right ) y^{\prime }}{x}+\frac {\left (x +2\right ) y}{x^{2}}=0 \\ \square & {} & \textrm {Check to see if}\hspace {3pt} x_{0}=0\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & \circ & \textrm {Define functions}\hspace {3pt} \\ {} & {} & \left [P_{2}\left (x \right )=-\frac {x +2}{x}, P_{3}\left (x \right )=\frac {x +2}{x^{2}}\right ] \\ {} & \circ & x \cdot P_{2}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x \cdot P_{2}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=-2 \\ {} & \circ & x^{2}\cdot P_{3}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x^{2}\cdot P_{3}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=2 \\ {} & \circ & x =0\textrm {is a regular singular point}\hspace {3pt} \\ & {} & \textrm {Check to see if}\hspace {3pt} x_{0}=0\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & {} & x_{0}=0 \\ \bullet & {} & \textrm {Multiply by denominators}\hspace {3pt} \\ {} & {} & x^{2} \left (\frac {d}{d x}y^{\prime }\right )-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y=0 \\ \bullet & {} & \textrm {Assume series solution for}\hspace {3pt} y \\ {} & {} & y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +r} \\ \square & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{m}\cdot y\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =0..1 \\ {} & {} & x^{m}\cdot y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +r +m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k -m \\ {} & {} & x^{m}\cdot y=\moverset {\infty }{\munderset {k =m}{\sum }}a_{k -m} x^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{m}\cdot y^{\prime }\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =1..2 \\ {} & {} & x^{m}\cdot y^{\prime }=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) x^{k +r -1+m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +1-m \\ {} & {} & x^{m}\cdot y^{\prime }=\moverset {\infty }{\munderset {k =-1+m}{\sum }}a_{k +1-m} \left (k +1-m +r \right ) x^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{2}\cdot \left (\frac {d}{d x}y^{\prime }\right )\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & x^{2}\cdot \left (\frac {d}{d x}y^{\prime }\right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) \left (k +r -1\right ) x^{k +r} \\ & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & {} & a_{0} \left (-1+r \right ) \left (-2+r \right ) x^{r}+\left (\moverset {\infty }{\munderset {k =1}{\sum }}\left (a_{k} \left (k +r -1\right ) \left (k +r -2\right )-a_{k -1} \left (k +r -2\right )\right ) x^{k +r}\right )=0 \\ \bullet & {} & a_{0}\textrm {cannot be 0 by assumption, giving the indicial equation}\hspace {3pt} \\ {} & {} & \left (-1+r \right ) \left (-2+r \right )=0 \\ \bullet & {} & \textrm {Values of r that satisfy the indicial equation}\hspace {3pt} \\ {} & {} & r \in \left \{1, 2\right \} \\ \bullet & {} & \textrm {Each term in the series must be 0, giving the recursion relation}\hspace {3pt} \\ {} & {} & \left (k +r -2\right ) \left (a_{k} \left (k +r -1\right )-a_{k -1}\right )=0 \\ \bullet & {} & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +1 \\ {} & {} & \left (k +r -1\right ) \left (a_{k +1} \left (k +r \right )-a_{k}\right )=0 \\ \bullet & {} & \textrm {Recursion relation that defines series solution to ODE}\hspace {3pt} \\ {} & {} & a_{k +1}=\frac {a_{k}}{k +r} \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =1 \\ {} & {} & a_{k +1}=\frac {a_{k}}{k +1} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =1 \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +1}, a_{k +1}=\frac {a_{k}}{k +1}\right ] \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =2 \\ {} & {} & a_{k +1}=\frac {a_{k}}{k +2} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =2 \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +2}, a_{k +1}=\frac {a_{k}}{k +2}\right ] \\ \bullet & {} & \textrm {Combine solutions and rename parameters}\hspace {3pt} \\ {} & {} & \left [y=\left (\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +1}\right )+\left (\moverset {\infty }{\munderset {k =0}{\sum }}b_{k} x^{k +2}\right ), a_{k +1}=\frac {a_{k}}{k +1}, b_{k +1}=\frac {b_{k}}{k +2}\right ] \end {array} \]

Maple trace Kovacic algorithm successful

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
trying a symmetry of the form [xi=0, eta=F(x)] 
checking if the LODE is missing y 
-> Trying a Liouvillian solution using Kovacics algorithm 
   A Liouvillian solution exists 
   Reducible group (found an exponential solution) 
   Reducible group (found another exponential solution) 
<- Kovacics algorithm successful`
 

Solution by Maple

Time used: 0.015 (sec). Leaf size: 12

dsolve([x^2*diff(y(x),x$2)-x*(x+2)*diff(y(x),x)+(x+2)*y(x)=0,x],singsol=all)
 

\[ y \left (x \right ) = x \left ({\mathrm e}^{x} c_{2} +c_{1} \right ) \]

Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 16

DSolve[x^2*y''[x]-x*(x+2)*y'[x]+(x+2)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to x \left (c_2 e^x+c_1\right ) \]