20.7 problem 5

20.7.1 Maple step by step solution

Internal problem ID [6467]
Internal file name [OUTPUT/5715_Sunday_June_05_2022_03_48_28_PM_75065673/index.tex]

Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.5. More on Regular Singular Points. Page 183
Problem number: 5.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

\[ \boxed {3 \left (x +1\right )^{2} y^{\prime \prime }-\left (x +1\right ) y^{\prime }-y=0} \] With the expansion point for the power series method at \(x = -1\).

The ode does not have its expansion point at \(x = 0\), therefore to simplify the computation of power series expansion, change of variable is made on the independent variable to shift the initial conditions and the expasion point back to zero. The new ode is then solved more easily since the expansion point is now at zero. The solution converted back to the original independent variable. Let \[ t = x +1 \] The ode is converted to be in terms of the new independent variable \(t\). This results in \[ 3 t^{2} \left (\frac {d^{2}}{d t^{2}}y \left (t \right )\right )-t \left (\frac {d}{d t}y \left (t \right )\right )-y \left (t \right ) = 0 \] With its expansion point and initial conditions now at \(t = 0\). The transformed ODE is now solved. The type of the expansion point is first determined. This is done on the homogeneous part of the ODE. \[ 3 t^{2} \left (\frac {d^{2}}{d t^{2}}y \left (t \right )\right )-t \left (\frac {d}{d t}y \left (t \right )\right )-y \left (t \right ) = 0 \] The following is summary of singularities for the above ode. Writing the ode as \begin {align*} \frac {d^{2}}{d t^{2}}y \left (t \right )+p(t) \frac {d}{d t}y \left (t \right ) + q(t) y \left (t \right ) &=0 \end {align*}

Where \begin {align*} p(t) &= -\frac {1}{3 t}\\ q(t) &= -\frac {1}{3 t^{2}}\\ \end {align*}

Table 199: Table \(p(t),q(t)\) singularites.
\(p(t)=-\frac {1}{3 t}\)
singularity type
\(t = 0\) \(\text {``regular''}\)
\(q(t)=-\frac {1}{3 t^{2}}\)
singularity type
\(t = 0\) \(\text {``regular''}\)

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : \([0, \infty ]\)

Irregular singular points : \([]\)

Since \(t = 0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be \[ 3 t^{2} \left (\frac {d^{2}}{d t^{2}}y \left (t \right )\right )-t \left (\frac {d}{d t}y \left (t \right )\right )-y \left (t \right ) = 0 \] Let the solution be represented as Frobenius power series of the form \[ y \left (t \right ) = \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} t^{n +r} \] Then \begin{align*} \frac {d}{d t}y \left (t \right ) &= \moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} t^{n +r -1} \\ \frac {d^{2}}{d t^{2}}y \left (t \right ) &= \moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) \left (n +r -1\right ) a_{n} t^{n +r -2} \\ \end{align*} Substituting the above back into the ode gives \begin{equation} \tag{1} 3 t^{2} \left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) \left (n +r -1\right ) a_{n} t^{n +r -2}\right )-t \left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} t^{n +r -1}\right )-\left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} t^{n +r}\right ) = 0 \end{equation} Which simplifies to \begin{equation} \tag{2A} \left (\moverset {\infty }{\munderset {n =0}{\sum }}3 t^{n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )\right )+\moverset {\infty }{\munderset {n =0}{\sum }}\left (-t^{n +r} a_{n} \left (n +r \right )\right )+\moverset {\infty }{\munderset {n =0}{\sum }}\left (-a_{n} t^{n +r}\right ) = 0 \end{equation} The next step is to make all powers of \(t\) be \(n +r\) in each summation term. Going over each summation term above with power of \(t\) in it which is not already \(t^{n +r}\) and adjusting the power and the corresponding index gives Substituting all the above in Eq (2A) gives the following equation where now all powers of \(t\) are the same and equal to \(n +r\). \begin{equation} \tag{2B} \left (\moverset {\infty }{\munderset {n =0}{\sum }}3 t^{n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )\right )+\moverset {\infty }{\munderset {n =0}{\sum }}\left (-t^{n +r} a_{n} \left (n +r \right )\right )+\moverset {\infty }{\munderset {n =0}{\sum }}\left (-a_{n} t^{n +r}\right ) = 0 \end{equation} The indicial equation is obtained from \(n = 0\). From Eq (2B) this gives \[ 3 t^{n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )-t^{n +r} a_{n} \left (n +r \right )-a_{n} t^{n +r} = 0 \] When \(n = 0\) the above becomes \[ 3 t^{r} a_{0} r \left (-1+r \right )-t^{r} a_{0} r -a_{0} t^{r} = 0 \] Or \[ \left (3 t^{r} r \left (-1+r \right )-t^{r} r -t^{r}\right ) a_{0} = 0 \] Since \(a_{0}\neq 0\) then the above simplifies to \[ \left (3 r^{2}-4 r -1\right ) t^{r} = 0 \] Since the above is true for all \(t\) then the indicial equation becomes \[ 3 r^{2}-4 r -1 = 0 \] Solving for \(r\) gives the roots of the indicial equation as \begin {align*} r_1 &= \frac {2}{3}+\frac {\sqrt {7}}{3}\\ r_2 &= \frac {2}{3}-\frac {\sqrt {7}}{3} \end {align*}

Since \(a_{0}\neq 0\) then the indicial equation becomes \[ \left (3 r^{2}-4 r -1\right ) t^{r} = 0 \] Solving for \(r\) gives the roots of the indicial equation as \(\left [\frac {2}{3}+\frac {\sqrt {7}}{3}, \frac {2}{3}-\frac {\sqrt {7}}{3}\right ]\).

Since \(r_1 - r_2 = \frac {2 \sqrt {7}}{3}\) is not an integer, then we can construct two linearly independent solutions \begin {align*} y_{1}\left (t \right ) &= t^{r_{1}} \left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} t^{n}\right )\\ y_{2}\left (t \right ) &= t^{r_{2}} \left (\moverset {\infty }{\munderset {n =0}{\sum }}b_{n} t^{n}\right ) \end {align*}

Or \begin {align*} y_{1}\left (t \right ) &= \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} t^{n +\frac {2}{3}+\frac {\sqrt {7}}{3}}\\ y_{2}\left (t \right ) &= \moverset {\infty }{\munderset {n =0}{\sum }}b_{n} t^{n +\frac {2}{3}-\frac {\sqrt {7}}{3}} \end {align*}

We start by finding \(y_{1}\left (t \right )\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n = 0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0} = 1\). For \(0\le n\) the recursive equation is \begin{equation} \tag{3} 3 a_{n} \left (n +r \right ) \left (n +r -1\right )-a_{n} \left (n +r \right )-a_{n} = 0 \end{equation} Solving for \(a_{n}\) from recursive equation (4) gives \[ a_{n} = 0\tag {4} \] Which for the root \(r = \frac {2}{3}+\frac {\sqrt {7}}{3}\) becomes \[ a_{n} = 0\tag {5} \] At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r = \frac {2}{3}+\frac {\sqrt {7}}{3}\) and after as more terms are found using the above recursive equation.

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)

For \(n = 1\), using the above recursive equation gives \[ a_{1}=0 \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(0\) \(0\)

For \(n = 2\), using the above recursive equation gives \[ a_{2}=0 \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(0\) \(0\)
\(a_{2}\) \(0\) \(0\)

For \(n = 3\), using the above recursive equation gives \[ a_{3}=0 \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(0\) \(0\)
\(a_{2}\) \(0\) \(0\)
\(a_{3}\) \(0\) \(0\)

For \(n = 4\), using the above recursive equation gives \[ a_{4}=0 \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(0\) \(0\)
\(a_{2}\) \(0\) \(0\)
\(a_{3}\) \(0\) \(0\)
\(a_{4}\) \(0\) \(0\)

For \(n = 5\), using the above recursive equation gives \[ a_{5}=0 \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(0\) \(0\)
\(a_{2}\) \(0\) \(0\)
\(a_{3}\) \(0\) \(0\)
\(a_{4}\) \(0\) \(0\)
\(a_{5}\) \(0\) \(0\)

For \(n = 6\), using the above recursive equation gives \[ a_{6}=0 \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(0\) \(0\)
\(a_{2}\) \(0\) \(0\)
\(a_{3}\) \(0\) \(0\)
\(a_{4}\) \(0\) \(0\)
\(a_{5}\) \(0\) \(0\)
\(a_{6}\) \(0\) \(0\)

For \(n = 7\), using the above recursive equation gives \[ a_{7}=0 \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(0\) \(0\)
\(a_{2}\) \(0\) \(0\)
\(a_{3}\) \(0\) \(0\)
\(a_{4}\) \(0\) \(0\)
\(a_{5}\) \(0\) \(0\)
\(a_{6}\) \(0\) \(0\)
\(a_{7}\) \(0\) \(0\)

Using the above table, then the solution \(y_{1}\left (t \right )\) is \begin {align*} y_{1}\left (t \right )&= t^{\frac {2}{3}+\frac {\sqrt {7}}{3}} \left (a_{0}+a_{1} t +a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}+a_{5} t^{5}+a_{6} t^{6}+a_{7} t^{7}+a_{8} t^{8}\dots \right ) \\ &= t^{\frac {2}{3}+\frac {\sqrt {7}}{3}} \left (1+O\left (t^{8}\right )\right ) \end {align*}

Now the second solution \(y_{2}\left (t \right )\) is found. Eq (2B) derived above is now used to find all \(b_{n}\) coefficients. The case \(n = 0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0} = 1\). For \(0\le n\) the recursive equation is \begin{equation} \tag{3} 3 b_{n} \left (n +r \right ) \left (n +r -1\right )-b_{n} \left (n +r \right )-b_{n} = 0 \end{equation} Solving for \(b_{n}\) from recursive equation (4) gives \[ b_{n} = 0\tag {4} \] Which for the root \(r = \frac {2}{3}-\frac {\sqrt {7}}{3}\) becomes \[ b_{n} = 0\tag {5} \] At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r = \frac {2}{3}-\frac {\sqrt {7}}{3}\) and after as more terms are found using the above recursive equation.

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)

For \(n = 1\), using the above recursive equation gives \[ b_{1}=0 \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(0\) \(0\)

For \(n = 2\), using the above recursive equation gives \[ b_{2}=0 \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(0\) \(0\)
\(b_{2}\) \(0\) \(0\)

For \(n = 3\), using the above recursive equation gives \[ b_{3}=0 \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(0\) \(0\)
\(b_{2}\) \(0\) \(0\)
\(b_{3}\) \(0\) \(0\)

For \(n = 4\), using the above recursive equation gives \[ b_{4}=0 \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(0\) \(0\)
\(b_{2}\) \(0\) \(0\)
\(b_{3}\) \(0\) \(0\)
\(b_{4}\) \(0\) \(0\)

For \(n = 5\), using the above recursive equation gives \[ b_{5}=0 \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(0\) \(0\)
\(b_{2}\) \(0\) \(0\)
\(b_{3}\) \(0\) \(0\)
\(b_{4}\) \(0\) \(0\)
\(b_{5}\) \(0\) \(0\)

For \(n = 6\), using the above recursive equation gives \[ b_{6}=0 \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(0\) \(0\)
\(b_{2}\) \(0\) \(0\)
\(b_{3}\) \(0\) \(0\)
\(b_{4}\) \(0\) \(0\)
\(b_{5}\) \(0\) \(0\)
\(b_{6}\) \(0\) \(0\)

For \(n = 7\), using the above recursive equation gives \[ b_{7}=0 \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(0\) \(0\)
\(b_{2}\) \(0\) \(0\)
\(b_{3}\) \(0\) \(0\)
\(b_{4}\) \(0\) \(0\)
\(b_{5}\) \(0\) \(0\)
\(b_{6}\) \(0\) \(0\)
\(b_{7}\) \(0\) \(0\)

Using the above table, then the solution \(y_{2}\left (t \right )\) is \begin {align*} y_{2}\left (t \right )&= t^{\frac {2}{3}+\frac {\sqrt {7}}{3}} \left (b_{0}+b_{1} t +b_{2} t^{2}+b_{3} t^{3}+b_{4} t^{4}+b_{5} t^{5}+b_{6} t^{6}+b_{7} t^{7}+b_{8} t^{8}\dots \right ) \\ &= t^{\frac {2}{3}-\frac {\sqrt {7}}{3}} \left (1+O\left (t^{8}\right )\right ) \end {align*}

Therefore the homogeneous solution is \begin{align*} y_h(t) &= c_{1} y_{1}\left (t \right )+c_{2} y_{2}\left (t \right ) \\ &= c_{1} t^{\frac {2}{3}+\frac {\sqrt {7}}{3}} \left (1+O\left (t^{8}\right )\right ) + c_{2} t^{\frac {2}{3}-\frac {\sqrt {7}}{3}} \left (1+O\left (t^{8}\right )\right ) \\ \end{align*} Hence the final solution is \begin{align*} y \left (t \right ) &= y_h \\ &= c_{1} t^{\frac {2}{3}+\frac {\sqrt {7}}{3}} \left (1+O\left (t^{8}\right )\right )+c_{2} t^{\frac {2}{3}-\frac {\sqrt {7}}{3}} \left (1+O\left (t^{8}\right )\right ) \\ \end{align*} Replacing \(t\) in the above with the original independent variable \(xs\)using \(t = x +1\) results in \[ y = c_{1} \left (x +1\right )^{\frac {2}{3}+\frac {\sqrt {7}}{3}} \left (1+O\left (\left (x +1\right )^{8}\right )\right )+c_{2} \left (x +1\right )^{\frac {2}{3}-\frac {\sqrt {7}}{3}} \left (1+O\left (\left (x +1\right )^{8}\right )\right ) \]

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= c_{1} \left (x +1\right )^{\frac {2}{3}+\frac {\sqrt {7}}{3}} \left (1+O\left (\left (x +1\right )^{8}\right )\right )+c_{2} \left (x +1\right )^{\frac {2}{3}-\frac {\sqrt {7}}{3}} \left (1+O\left (\left (x +1\right )^{8}\right )\right ) \\ \end{align*}

Verification of solutions

\[ y = c_{1} \left (x +1\right )^{\frac {2}{3}+\frac {\sqrt {7}}{3}} \left (1+O\left (\left (x +1\right )^{8}\right )\right )+c_{2} \left (x +1\right )^{\frac {2}{3}-\frac {\sqrt {7}}{3}} \left (1+O\left (\left (x +1\right )^{8}\right )\right ) \] Verified OK.

20.7.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & 3 \left (x +1\right )^{2} \left (\frac {d}{d x}y^{\prime }\right )+\left (-x -1\right ) y^{\prime }-y=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & \frac {d}{d x}y^{\prime } \\ \bullet & {} & \textrm {Isolate 2nd derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }=\frac {y}{3 \left (x +1\right )^{2}}+\frac {y^{\prime }}{3 \left (x +1\right )} \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }-\frac {y^{\prime }}{3 \left (x +1\right )}-\frac {y}{3 \left (x +1\right )^{2}}=0 \\ \square & {} & \textrm {Check to see if}\hspace {3pt} x_{0}=-1\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & \circ & \textrm {Define functions}\hspace {3pt} \\ {} & {} & \left [P_{2}\left (x \right )=-\frac {1}{3 \left (x +1\right )}, P_{3}\left (x \right )=-\frac {1}{3 \left (x +1\right )^{2}}\right ] \\ {} & \circ & \left (x +1\right )\cdot P_{2}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =-1 \\ {} & {} & \left (\left (x +1\right )\cdot P_{2}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}-1}}}=-\frac {1}{3} \\ {} & \circ & \left (x +1\right )^{2}\cdot P_{3}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =-1 \\ {} & {} & \left (\left (x +1\right )^{2}\cdot P_{3}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}-1}}}=-\frac {1}{3} \\ {} & \circ & x =-1\textrm {is a regular singular point}\hspace {3pt} \\ & {} & \textrm {Check to see if}\hspace {3pt} x_{0}=-1\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & {} & x_{0}=-1 \\ \bullet & {} & \textrm {Multiply by denominators}\hspace {3pt} \\ {} & {} & 3 \left (x +1\right )^{2} \left (\frac {d}{d x}y^{\prime }\right )+\left (-x -1\right ) y^{\prime }-y=0 \\ \bullet & {} & \textrm {Change variables using}\hspace {3pt} x =u -1\hspace {3pt}\textrm {so that the regular singular point is at}\hspace {3pt} u =0 \\ {} & {} & 3 u^{2} \left (\frac {d}{d u}\frac {d}{d u}y \left (u \right )\right )-u \left (\frac {d}{d u}y \left (u \right )\right )-y \left (u \right )=0 \\ \bullet & {} & \textrm {Assume series solution for}\hspace {3pt} y \left (u \right ) \\ {} & {} & y \left (u \right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} u^{k +r} \\ \square & {} & \textrm {Rewrite DE with series expansions}\hspace {3pt} \\ {} & \circ & \textrm {Convert}\hspace {3pt} u \cdot \left (\frac {d}{d u}y \left (u \right )\right )\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & u \cdot \left (\frac {d}{d u}y \left (u \right )\right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) u^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} u^{2}\cdot \left (\frac {d}{d u}\frac {d}{d u}y \left (u \right )\right )\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & u^{2}\cdot \left (\frac {d}{d u}\frac {d}{d u}y \left (u \right )\right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) \left (k +r -1\right ) u^{k +r} \\ & {} & \textrm {Rewrite DE with series expansions}\hspace {3pt} \\ {} & {} & \moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (3 k^{2}+6 k r +3 r^{2}-4 k -4 r -1\right ) u^{k +r}=0 \\ \bullet & {} & a_{0}\textrm {cannot be 0 by assumption, giving the indicial equation}\hspace {3pt} \\ {} & {} & r =0 \\ \bullet & {} & \textrm {Each term in the series must be 0, giving the recursion relation}\hspace {3pt} \\ {} & {} & a_{k} \left (3 k^{2}-4 k -1\right )=0 \\ \bullet & {} & \textrm {Recursion relation that defines series solution to ODE}\hspace {3pt} \\ {} & {} & a_{k}=0 \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =0 \\ {} & {} & a_{k}=0 \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =0 \\ {} & {} & \left [y \left (u \right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} u^{k}, a_{k}=0\right ] \\ \bullet & {} & \textrm {Revert the change of variables}\hspace {3pt} u =x +1 \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (x +1\right )^{k}, a_{k}=0\right ] \end {array} \]

Maple trace

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
<- LODE of Euler type successful`
 

Solution by Maple

Time used: 0.031 (sec). Leaf size: 43

Order:=8; 
dsolve(3*(x+1)^2*diff(y(x),x$2)-(x+1)*diff(y(x),x)-y(x)=0,y(x),type='series',x=-1);
 

\[ y \left (x \right ) = \left (x +1\right )^{\frac {2}{3}} \left (\left (x +1\right )^{-\frac {\sqrt {7}}{3}} c_{1} +\left (x +1\right )^{\frac {\sqrt {7}}{3}} c_{2} \right )+O\left (x^{8}\right ) \]

Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 42

AsymptoticDSolveValue[3*(x+1)^2*y''[x]-(x+1)*y'[x]-y[x]==0,y[x],{x,-1,7}]
 

\[ y(x)\to c_1 (x+1)^{\frac {1}{3} \left (2+\sqrt {7}\right )}+c_2 (x+1)^{\frac {1}{3} \left (2-\sqrt {7}\right )} \]