3.83 problem 1087

3.83.1 Solving as second order bessel ode ode
3.83.2 Maple step by step solution

Internal problem ID [9416]
Internal file name [OUTPUT/8356_Monday_June_06_2022_02_49_42_AM_16659222/index.tex]

Book: Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section: Chapter 2, linear second order
Problem number: 1087.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

\[ \boxed {4 y^{\prime \prime }-\left (x^{2}+a \right ) y=0} \]

3.83.1 Solving as second order bessel ode ode

Writing the ode as \begin {align*} x^{2} y^{\prime \prime }+\left (-\frac {1}{4} x^{4}-\frac {1}{4} a \,x^{2}\right ) y = 0\tag {1} \end {align*}

Bessel ode has the form \begin {align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (-n^{2}+x^{2}\right ) y = 0\tag {2} \end {align*}

The generalized form of Bessel ode is given by Bowman (1958) as the following \begin {align*} x^{2} y^{\prime \prime }+\left (1-2 \alpha \right ) x y^{\prime }+\left (\beta ^{2} \gamma ^{2} x^{2 \gamma }-n^{2} \gamma ^{2}+\alpha ^{2}\right ) y = 0\tag {3} \end {align*}

With the standard solution \begin {align*} y&=x^{\alpha } \left (c_{1} \operatorname {BesselJ}\left (n , \beta \,x^{\gamma }\right )+c_{2} \operatorname {BesselY}\left (n , \beta \,x^{\gamma }\right )\right )\tag {4} \end {align*}

Comparing (3) to (1) and solving for \(\alpha ,\beta ,n,\gamma \) gives \begin {align*} \alpha &= {\frac {1}{2}}\\ \beta &= 2\\ n &= -1\\ \gamma &= {\frac {1}{2}} \end {align*}

Substituting all the above into (4) gives the solution as \begin {align*} y = -c_{1} \sqrt {x}\, \operatorname {BesselJ}\left (1, 2 \sqrt {x}\right )-c_{2} \sqrt {x}\, \operatorname {BesselY}\left (1, 2 \sqrt {x}\right ) \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= -c_{1} \sqrt {x}\, \operatorname {BesselJ}\left (1, 2 \sqrt {x}\right )-c_{2} \sqrt {x}\, \operatorname {BesselY}\left (1, 2 \sqrt {x}\right ) \\ \end{align*}

Verification of solutions

\[ y = -c_{1} \sqrt {x}\, \operatorname {BesselJ}\left (1, 2 \sqrt {x}\right )-c_{2} \sqrt {x}\, \operatorname {BesselY}\left (1, 2 \sqrt {x}\right ) \] Verified OK.

3.83.2 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & 4 \frac {d}{d x}y^{\prime }+\left (-x^{2}-a \right ) y=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & \frac {d}{d x}y^{\prime } \\ \bullet & {} & \textrm {Isolate 2nd derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }=\left (\frac {x^{2}}{4}+\frac {a}{4}\right ) y \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }+\left (-\frac {x^{2}}{4}-\frac {a}{4}\right ) y=0 \\ \bullet & {} & \textrm {Multiply by denominators}\hspace {3pt} \\ {} & {} & 4 \frac {d}{d x}y^{\prime }+\left (-x^{2}-a \right ) y=0 \\ \bullet & {} & \textrm {Assume series solution for}\hspace {3pt} y \\ {} & {} & y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k} \\ \square & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{m}\cdot y\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =0..2 \\ {} & {} & x^{m}\cdot y=\moverset {\infty }{\munderset {k =\max \left (0, -m \right )}{\sum }}a_{k} x^{k +m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k -m \\ {} & {} & x^{m}\cdot y=\moverset {\infty }{\munderset {k =\max \left (0, -m \right )+m}{\sum }}a_{k -m} x^{k} \\ {} & \circ & \textrm {Convert}\hspace {3pt} \frac {d}{d x}y^{\prime }\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }=\moverset {\infty }{\munderset {k =2}{\sum }}a_{k} k \left (k -1\right ) x^{k -2} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +2 \\ {} & {} & \frac {d}{d x}y^{\prime }=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k +2} \left (k +2\right ) \left (k +1\right ) x^{k} \\ & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & {} & -a_{0} a +8 a_{2}+\left (24 a_{3}-a_{1} a \right ) x +\left (\moverset {\infty }{\munderset {k =2}{\sum }}\left (4 a_{k +2} \left (k +2\right ) \left (k +1\right )-a_{k} a -a_{k -2}\right ) x^{k}\right )=0 \\ \bullet & {} & \textrm {The coefficients of each power of}\hspace {3pt} x \hspace {3pt}\textrm {must be 0}\hspace {3pt} \\ {} & {} & \left [8 a_{2}-a_{0} a =0, 24 a_{3}-a_{1} a =0\right ] \\ \bullet & {} & \textrm {Solve for the dependent coefficient(s)}\hspace {3pt} \\ {} & {} & \left \{a_{2}=\frac {a_{0} a}{8}, a_{3}=\frac {a_{1} a}{24}\right \} \\ \bullet & {} & \textrm {Each term in the series must be 0, giving the recursion relation}\hspace {3pt} \\ {} & {} & 4 \left (k^{2}+3 k +2\right ) a_{k +2}-a_{k} a -a_{k -2}=0 \\ \bullet & {} & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +2 \\ {} & {} & 4 \left (\left (k +2\right )^{2}+3 k +8\right ) a_{k +4}-a_{k +2} a -a_{k}=0 \\ \bullet & {} & \textrm {Recursion relation that defines the series solution to the ODE}\hspace {3pt} \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k}, a_{k +4}=\frac {a_{k +2} a +a_{k}}{4 \left (k^{2}+7 k +12\right )}, a_{2}=\frac {a_{0} a}{8}, a_{3}=\frac {a_{1} a}{24}\right ] \end {array} \]

Maple trace

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
trying a symmetry of the form [xi=0, eta=F(x)] 
checking if the LODE is missing y 
-> Trying a Liouvillian solution using Kovacics algorithm 
<- No Liouvillian solutions exists 
-> Trying a solution in terms of special functions: 
   -> Bessel 
   -> elliptic 
   -> Legendre 
   -> Whittaker 
      -> hyper3: Equivalence to 1F1 under a power @ Moebius 
      <- hyper3 successful: received ODE is equivalent to the 1F1 ODE 
   <- Whittaker successful 
<- special function solution successful`
 

Solution by Maple

Time used: 0.11 (sec). Leaf size: 33

dsolve(4*diff(diff(y(x),x),x)-(x^2+a)*y(x)=0,y(x), singsol=all)
 

\[ y \left (x \right ) = \frac {c_{2} \operatorname {WhittakerW}\left (-\frac {a}{8}, \frac {1}{4}, \frac {x^{2}}{2}\right )+c_{1} \operatorname {WhittakerM}\left (-\frac {a}{8}, \frac {1}{4}, \frac {x^{2}}{2}\right )}{\sqrt {x}} \]

Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 36

DSolve[(-a - x^2)*y[x] + 4*y''[x] == 0,y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to c_1 \operatorname {ParabolicCylinderD}\left (\frac {1}{4} (-a-2),x\right )+c_2 \operatorname {ParabolicCylinderD}\left (\frac {a-2}{4},i x\right ) \]