3.145 problem 1149

3.145.1 Solving as second order bessel ode ode
3.145.2 Maple step by step solution

Internal problem ID [9478]
Internal file name [OUTPUT/8418_Monday_June_06_2022_03_01_22_AM_54297289/index.tex]

Book: Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section: Chapter 2, linear second order
Problem number: 1149.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

\[ \boxed {x^{2} y^{\prime \prime }+\left (a x +b \right ) y=0} \]

3.145.1 Solving as second order bessel ode ode

Writing the ode as \begin {align*} x^{2} y^{\prime \prime }+\left (a x +b \right ) y = 0\tag {1} \end {align*}

Bessel ode has the form \begin {align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (-n^{2}+x^{2}\right ) y = 0\tag {2} \end {align*}

The generalized form of Bessel ode is given by Bowman (1958) as the following \begin {align*} x^{2} y^{\prime \prime }+\left (1-2 \alpha \right ) x y^{\prime }+\left (\beta ^{2} \gamma ^{2} x^{2 \gamma }-n^{2} \gamma ^{2}+\alpha ^{2}\right ) y = 0\tag {3} \end {align*}

With the standard solution \begin {align*} y&=x^{\alpha } \left (c_{1} \operatorname {BesselJ}\left (n , \beta \,x^{\gamma }\right )+c_{2} \operatorname {BesselY}\left (n , \beta \,x^{\gamma }\right )\right )\tag {4} \end {align*}

Comparing (3) to (1) and solving for \(\alpha ,\beta ,n,\gamma \) gives \begin {align*} \alpha &= {\frac {1}{2}}\\ \beta &= 2 \sqrt {a}\\ n &= \sqrt {-4 b +1}\\ \gamma &= {\frac {1}{2}} \end {align*}

Substituting all the above into (4) gives the solution as \begin {align*} y = c_{1} \sqrt {x}\, \operatorname {BesselJ}\left (\sqrt {-4 b +1}, 2 \sqrt {a}\, \sqrt {x}\right )+c_{2} \sqrt {x}\, \operatorname {BesselY}\left (\sqrt {-4 b +1}, 2 \sqrt {a}\, \sqrt {x}\right ) \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= c_{1} \sqrt {x}\, \operatorname {BesselJ}\left (\sqrt {-4 b +1}, 2 \sqrt {a}\, \sqrt {x}\right )+c_{2} \sqrt {x}\, \operatorname {BesselY}\left (\sqrt {-4 b +1}, 2 \sqrt {a}\, \sqrt {x}\right ) \\ \end{align*}

Verification of solutions

\[ y = c_{1} \sqrt {x}\, \operatorname {BesselJ}\left (\sqrt {-4 b +1}, 2 \sqrt {a}\, \sqrt {x}\right )+c_{2} \sqrt {x}\, \operatorname {BesselY}\left (\sqrt {-4 b +1}, 2 \sqrt {a}\, \sqrt {x}\right ) \] Verified OK.

3.145.2 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & x^{2} \left (\frac {d}{d x}y^{\prime }\right )+\left (a x +b \right ) y=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & \frac {d}{d x}y^{\prime } \\ \bullet & {} & \textrm {Isolate 2nd derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }=-\frac {\left (a x +b \right ) y}{x^{2}} \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }+\frac {\left (a x +b \right ) y}{x^{2}}=0 \\ \square & {} & \textrm {Check to see if}\hspace {3pt} x_{0}=0\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & \circ & \textrm {Define functions}\hspace {3pt} \\ {} & {} & \left [P_{2}\left (x \right )=0, P_{3}\left (x \right )=\frac {a x +b}{x^{2}}\right ] \\ {} & \circ & x \cdot P_{2}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x \cdot P_{2}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=0 \\ {} & \circ & x^{2}\cdot P_{3}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x^{2}\cdot P_{3}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=b \\ {} & \circ & x =0\textrm {is a regular singular point}\hspace {3pt} \\ & {} & \textrm {Check to see if}\hspace {3pt} x_{0}=0\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & {} & x_{0}=0 \\ \bullet & {} & \textrm {Multiply by denominators}\hspace {3pt} \\ {} & {} & x^{2} \left (\frac {d}{d x}y^{\prime }\right )+\left (a x +b \right ) y=0 \\ \bullet & {} & \textrm {Assume series solution for}\hspace {3pt} y \\ {} & {} & y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +r} \\ \square & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{m}\cdot y\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =0..1 \\ {} & {} & x^{m}\cdot y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +r +m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k -m \\ {} & {} & x^{m}\cdot y=\moverset {\infty }{\munderset {k =m}{\sum }}a_{k -m} x^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{2}\cdot \left (\frac {d}{d x}y^{\prime }\right )\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & x^{2}\cdot \left (\frac {d}{d x}y^{\prime }\right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) \left (k +r -1\right ) x^{k +r} \\ & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & {} & a_{0} \left (r^{2}+b -r \right ) x^{r}+\left (\moverset {\infty }{\munderset {k =1}{\sum }}\left (a_{k} \left (k^{2}+2 k r +r^{2}+b -k -r \right )+a_{k -1} a \right ) x^{k +r}\right )=0 \\ \bullet & {} & a_{0}\textrm {cannot be 0 by assumption, giving the indicial equation}\hspace {3pt} \\ {} & {} & r^{2}+b -r =0 \\ \bullet & {} & \textrm {Values of r that satisfy the indicial equation}\hspace {3pt} \\ {} & {} & r \in \left \{\frac {1}{2}-\frac {\sqrt {-4 b +1}}{2}, \frac {\sqrt {-4 b +1}}{2}+\frac {1}{2}\right \} \\ \bullet & {} & \textrm {Each term in the series must be 0, giving the recursion relation}\hspace {3pt} \\ {} & {} & \left (k^{2}+\left (2 r -1\right ) k +r^{2}+b -r \right ) a_{k}+a_{k -1} a =0 \\ \bullet & {} & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +1 \\ {} & {} & \left (\left (k +1\right )^{2}+\left (2 r -1\right ) \left (k +1\right )+r^{2}+b -r \right ) a_{k +1}+a_{k} a =0 \\ \bullet & {} & \textrm {Recursion relation that defines series solution to ODE}\hspace {3pt} \\ {} & {} & a_{k +1}=-\frac {a_{k} a}{k^{2}+2 k r +r^{2}+b +k +r} \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =\frac {1}{2}-\frac {\sqrt {-4 b +1}}{2} \\ {} & {} & a_{k +1}=-\frac {a_{k} a}{k^{2}+2 k \left (\frac {1}{2}-\frac {\sqrt {-4 b +1}}{2}\right )+\left (\frac {1}{2}-\frac {\sqrt {-4 b +1}}{2}\right )^{2}+b +k +\frac {1}{2}-\frac {\sqrt {-4 b +1}}{2}} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =\frac {1}{2}-\frac {\sqrt {-4 b +1}}{2} \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +\frac {1}{2}-\frac {\sqrt {-4 b +1}}{2}}, a_{k +1}=-\frac {a_{k} a}{k^{2}+2 k \left (\frac {1}{2}-\frac {\sqrt {-4 b +1}}{2}\right )+\left (\frac {1}{2}-\frac {\sqrt {-4 b +1}}{2}\right )^{2}+b +k +\frac {1}{2}-\frac {\sqrt {-4 b +1}}{2}}\right ] \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =\frac {\sqrt {-4 b +1}}{2}+\frac {1}{2} \\ {} & {} & a_{k +1}=-\frac {a_{k} a}{k^{2}+2 k \left (\frac {\sqrt {-4 b +1}}{2}+\frac {1}{2}\right )+\left (\frac {\sqrt {-4 b +1}}{2}+\frac {1}{2}\right )^{2}+b +k +\frac {\sqrt {-4 b +1}}{2}+\frac {1}{2}} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =\frac {\sqrt {-4 b +1}}{2}+\frac {1}{2} \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +\frac {\sqrt {-4 b +1}}{2}+\frac {1}{2}}, a_{k +1}=-\frac {a_{k} a}{k^{2}+2 k \left (\frac {\sqrt {-4 b +1}}{2}+\frac {1}{2}\right )+\left (\frac {\sqrt {-4 b +1}}{2}+\frac {1}{2}\right )^{2}+b +k +\frac {\sqrt {-4 b +1}}{2}+\frac {1}{2}}\right ] \\ \bullet & {} & \textrm {Combine solutions and rename parameters}\hspace {3pt} \\ {} & {} & \left [y=\left (\moverset {\infty }{\munderset {k =0}{\sum }}c_{k} x^{k +\frac {1}{2}-\frac {\sqrt {-4 b +1}}{2}}\right )+\left (\moverset {\infty }{\munderset {k =0}{\sum }}d_{k} x^{k +\frac {\sqrt {-4 b +1}}{2}+\frac {1}{2}}\right ), c_{k +1}=-\frac {c_{k} a}{k^{2}+2 k \left (\frac {1}{2}-\frac {\sqrt {-4 b +1}}{2}\right )+\left (\frac {1}{2}-\frac {\sqrt {-4 b +1}}{2}\right )^{2}+b +k +\frac {1}{2}-\frac {\sqrt {-4 b +1}}{2}}, d_{k +1}=-\frac {d_{k} a}{k^{2}+2 k \left (\frac {\sqrt {-4 b +1}}{2}+\frac {1}{2}\right )+\left (\frac {\sqrt {-4 b +1}}{2}+\frac {1}{2}\right )^{2}+b +k +\frac {\sqrt {-4 b +1}}{2}+\frac {1}{2}}\right ] \end {array} \]

Maple trace

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
trying a symmetry of the form [xi=0, eta=F(x)] 
checking if the LODE is missing y 
-> Trying a Liouvillian solution using Kovacics algorithm 
<- No Liouvillian solutions exists 
-> Trying a solution in terms of special functions: 
   -> Bessel 
   <- Bessel successful 
<- special function solution successful`
 

Solution by Maple

Time used: 0.0 (sec). Leaf size: 45

dsolve(x^2*diff(diff(y(x),x),x)+(a*x+b)*y(x)=0,y(x), singsol=all)
 

\[ y \left (x \right ) = \left (\operatorname {BesselY}\left (\sqrt {1-4 b}, 2 \sqrt {a}\, \sqrt {x}\right ) c_{2} +\operatorname {BesselJ}\left (\sqrt {1-4 b}, 2 \sqrt {a}\, \sqrt {x}\right ) c_{1} \right ) \sqrt {x} \]

Solution by Mathematica

Time used: 0.101 (sec). Leaf size: 95

DSolve[(b + a*x)*y[x] + x^2*y''[x] == 0,y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to \sqrt {a} \sqrt {x} \left (c_1 \operatorname {Gamma}\left (1-\sqrt {1-4 b}\right ) \operatorname {BesselJ}\left (-\sqrt {1-4 b},2 \sqrt {a} \sqrt {x}\right )+c_2 \operatorname {Gamma}\left (\sqrt {1-4 b}+1\right ) \operatorname {BesselJ}\left (\sqrt {1-4 b},2 \sqrt {a} \sqrt {x}\right )\right ) \]