3.181 problem 1185

3.181.1 Solving as second order bessel ode ode
3.181.2 Maple step by step solution

Internal problem ID [9514]
Internal file name [OUTPUT/8454_Monday_June_06_2022_03_06_52_AM_135842/index.tex]

Book: Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section: Chapter 2, linear second order
Problem number: 1185.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

\[ \boxed {x^{2} y^{\prime \prime }+5 x y^{\prime }-\left (2 x^{3}-4\right ) y=0} \]

3.181.1 Solving as second order bessel ode ode

Writing the ode as \begin {align*} x^{2} y^{\prime \prime }+5 x y^{\prime }+\left (-2 x^{3}+4\right ) y = 0\tag {1} \end {align*}

Bessel ode has the form \begin {align*} x^{2} y^{\prime \prime }+x y^{\prime }+\left (-n^{2}+x^{2}\right ) y = 0\tag {2} \end {align*}

The generalized form of Bessel ode is given by Bowman (1958) as the following \begin {align*} x^{2} y^{\prime \prime }+\left (1-2 \alpha \right ) x y^{\prime }+\left (\beta ^{2} \gamma ^{2} x^{2 \gamma }-n^{2} \gamma ^{2}+\alpha ^{2}\right ) y = 0\tag {3} \end {align*}

With the standard solution \begin {align*} y&=x^{\alpha } \left (c_{1} \operatorname {BesselJ}\left (n , \beta \,x^{\gamma }\right )+c_{2} \operatorname {BesselY}\left (n , \beta \,x^{\gamma }\right )\right )\tag {4} \end {align*}

Comparing (3) to (1) and solving for \(\alpha ,\beta ,n,\gamma \) gives \begin {align*} \alpha &= -2\\ \beta &= \frac {2 i \sqrt {2}}{3}\\ n &= 0\\ \gamma &= {\frac {3}{2}} \end {align*}

Substituting all the above into (4) gives the solution as \begin {align*} y = \frac {c_{1} \operatorname {BesselI}\left (0, \frac {2 \sqrt {2}\, x^{\frac {3}{2}}}{3}\right )}{x^{2}}+\frac {c_{2} \operatorname {BesselY}\left (0, \frac {2 i \sqrt {2}\, x^{\frac {3}{2}}}{3}\right )}{x^{2}} \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= \frac {c_{1} \operatorname {BesselI}\left (0, \frac {2 \sqrt {2}\, x^{\frac {3}{2}}}{3}\right )}{x^{2}}+\frac {c_{2} \operatorname {BesselY}\left (0, \frac {2 i \sqrt {2}\, x^{\frac {3}{2}}}{3}\right )}{x^{2}} \\ \end{align*}

Verification of solutions

\[ y = \frac {c_{1} \operatorname {BesselI}\left (0, \frac {2 \sqrt {2}\, x^{\frac {3}{2}}}{3}\right )}{x^{2}}+\frac {c_{2} \operatorname {BesselY}\left (0, \frac {2 i \sqrt {2}\, x^{\frac {3}{2}}}{3}\right )}{x^{2}} \] Verified OK.

3.181.2 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & x^{2} \left (\frac {d}{d x}y^{\prime }\right )+5 x y^{\prime }+\left (-2 x^{3}+4\right ) y=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & \frac {d}{d x}y^{\prime } \\ \bullet & {} & \textrm {Isolate 2nd derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }=-\frac {5 y^{\prime }}{x}+\frac {2 \left (x^{3}-2\right ) y}{x^{2}} \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }+\frac {5 y^{\prime }}{x}-\frac {2 \left (x^{3}-2\right ) y}{x^{2}}=0 \\ \square & {} & \textrm {Check to see if}\hspace {3pt} x_{0}=0\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & \circ & \textrm {Define functions}\hspace {3pt} \\ {} & {} & \left [P_{2}\left (x \right )=\frac {5}{x}, P_{3}\left (x \right )=-\frac {2 \left (x^{3}-2\right )}{x^{2}}\right ] \\ {} & \circ & x \cdot P_{2}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x \cdot P_{2}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=5 \\ {} & \circ & x^{2}\cdot P_{3}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x^{2}\cdot P_{3}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=4 \\ {} & \circ & x =0\textrm {is a regular singular point}\hspace {3pt} \\ & {} & \textrm {Check to see if}\hspace {3pt} x_{0}=0\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & {} & x_{0}=0 \\ \bullet & {} & \textrm {Multiply by denominators}\hspace {3pt} \\ {} & {} & x^{2} \left (\frac {d}{d x}y^{\prime }\right )+5 x y^{\prime }+\left (-2 x^{3}+4\right ) y=0 \\ \bullet & {} & \textrm {Assume series solution for}\hspace {3pt} y \\ {} & {} & y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +r} \\ \square & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{m}\cdot y\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =0..3 \\ {} & {} & x^{m}\cdot y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +r +m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k -m \\ {} & {} & x^{m}\cdot y=\moverset {\infty }{\munderset {k =m}{\sum }}a_{k -m} x^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x \cdot y^{\prime }\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & x \cdot y^{\prime }=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) x^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{2}\cdot \left (\frac {d}{d x}y^{\prime }\right )\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & x^{2}\cdot \left (\frac {d}{d x}y^{\prime }\right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) \left (k +r -1\right ) x^{k +r} \\ & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & {} & a_{0} \left (2+r \right )^{2} x^{r}+a_{1} \left (3+r \right )^{2} x^{1+r}+a_{2} \left (4+r \right )^{2} x^{2+r}+\left (\moverset {\infty }{\munderset {k =3}{\sum }}\left (a_{k} \left (k +r +2\right )^{2}-2 a_{k -3}\right ) x^{k +r}\right )=0 \\ \bullet & {} & a_{0}\textrm {cannot be 0 by assumption, giving the indicial equation}\hspace {3pt} \\ {} & {} & \left (2+r \right )^{2}=0 \\ \bullet & {} & \textrm {Values of r that satisfy the indicial equation}\hspace {3pt} \\ {} & {} & r =-2 \\ \bullet & {} & \textrm {The coefficients of each power of}\hspace {3pt} x \hspace {3pt}\textrm {must be 0}\hspace {3pt} \\ {} & {} & \left [a_{1} \left (3+r \right )^{2}=0, a_{2} \left (4+r \right )^{2}=0\right ] \\ \bullet & {} & \textrm {Solve for the dependent coefficient(s)}\hspace {3pt} \\ {} & {} & \left \{a_{1}=0, a_{2}=0\right \} \\ \bullet & {} & \textrm {Each term in the series must be 0, giving the recursion relation}\hspace {3pt} \\ {} & {} & a_{k} \left (k +r +2\right )^{2}-2 a_{k -3}=0 \\ \bullet & {} & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +3 \\ {} & {} & a_{k +3} \left (k +5+r \right )^{2}-2 a_{k}=0 \\ \bullet & {} & \textrm {Recursion relation that defines series solution to ODE}\hspace {3pt} \\ {} & {} & a_{k +3}=\frac {2 a_{k}}{\left (k +5+r \right )^{2}} \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =-2 \\ {} & {} & a_{k +3}=\frac {2 a_{k}}{\left (k +3\right )^{2}} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =-2 \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k -2}, a_{k +3}=\frac {2 a_{k}}{\left (k +3\right )^{2}}, a_{1}=0, a_{2}=0\right ] \end {array} \]

Maple trace

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
trying a symmetry of the form [xi=0, eta=F(x)] 
checking if the LODE is missing y 
-> Trying a Liouvillian solution using Kovacics algorithm 
<- No Liouvillian solutions exists 
-> Trying a solution in terms of special functions: 
   -> Bessel 
   <- Bessel successful 
<- special function solution successful`
 

Solution by Maple

Time used: 0.0 (sec). Leaf size: 33

dsolve(x^2*diff(diff(y(x),x),x)+5*x*diff(y(x),x)-(2*x^3-4)*y(x)=0,y(x), singsol=all)
 

\[ y \left (x \right ) = \frac {c_{1} \operatorname {BesselI}\left (0, \frac {2 \sqrt {2}\, x^{\frac {3}{2}}}{3}\right )+c_{2} \operatorname {BesselK}\left (0, \frac {2 \sqrt {2}\, x^{\frac {3}{2}}}{3}\right )}{x^{2}} \]

Solution by Mathematica

Time used: 0.072 (sec). Leaf size: 65

DSolve[(4 - 2*x^3)*y[x] + 5*x*y'[x] + x^2*y''[x] == 0,y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to \frac {6 \sqrt [3]{3} c_2 K_0\left (\frac {2}{3} \sqrt {2} x^{3/2}\right )-3 \sqrt [3]{-3} c_1 \operatorname {BesselI}\left (0,\frac {2}{3} \sqrt {2} x^{3/2}\right )}{2^{2/3} x^2} \]