3.306 problem 1312

3.306.1 Solving as second order integrable as is ode
3.306.2 Solving as type second_order_integrable_as_is (not using ABC version)
3.306.3 Solving using Kovacic algorithm
3.306.4 Solving as exact linear second order ode ode
3.306.5 Maple step by step solution

Internal problem ID [9639]
Internal file name [OUTPUT/8581_Monday_June_06_2022_04_14_47_AM_49040386/index.tex]

Book: Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section: Chapter 2, linear second order
Problem number: 1312.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second_order_integrable_as_is"

Maple gives the following as the ode type

[[_2nd_order, _exact, _linear, _homogeneous]]

\[ \boxed {x \left (x^{2}+1\right ) y^{\prime \prime }+2 \left (x^{2}-1\right ) y^{\prime }-2 x y=0} \]

3.306.1 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t \(x\) gives \begin {align*} \int \left (\left (x^{3}+x \right ) y^{\prime \prime }+\left (2 x^{2}-2\right ) y^{\prime }-2 x y\right )d x &= 0 \\ \left (-x^{2}-3\right ) y+\left (x^{3}+x \right ) y^{\prime } = c_{1} \end {align*}

Which is now solved for \(y\).

Entering Linear first order ODE solver. In canonical form a linear first order is \begin {align*} y^{\prime } + p(x)y &= q(x) \end {align*}

Where here \begin {align*} p(x) &=-\frac {x^{2}+3}{x \left (x^{2}+1\right )}\\ q(x) &=\frac {c_{1}}{x \left (x^{2}+1\right )} \end {align*}

Hence the ode is \begin {align*} y^{\prime }-\frac {\left (x^{2}+3\right ) y}{x \left (x^{2}+1\right )} = \frac {c_{1}}{x \left (x^{2}+1\right )} \end {align*}

The integrating factor \(\mu \) is \begin{align*} \mu &= {\mathrm e}^{\int -\frac {x^{2}+3}{x \left (x^{2}+1\right )}d x} \\ &= {\mathrm e}^{\ln \left (x^{2}+1\right )-3 \ln \left (x \right )} \\ \end{align*} Which simplifies to \[ \mu = \frac {x^{2}+1}{x^{3}} \] The ode becomes \begin {align*} \frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}}\left ( \mu y\right ) &= \left (\mu \right ) \left (\frac {c_{1}}{x \left (x^{2}+1\right )}\right ) \\ \frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}} \left (\frac {\left (x^{2}+1\right ) y}{x^{3}}\right ) &= \left (\frac {x^{2}+1}{x^{3}}\right ) \left (\frac {c_{1}}{x \left (x^{2}+1\right )}\right )\\ \mathrm {d} \left (\frac {\left (x^{2}+1\right ) y}{x^{3}}\right ) &= \left (\frac {c_{1}}{x^{4}}\right )\, \mathrm {d} x \end {align*}

Integrating gives \begin {align*} \frac {\left (x^{2}+1\right ) y}{x^{3}} &= \int {\frac {c_{1}}{x^{4}}\,\mathrm {d} x}\\ \frac {\left (x^{2}+1\right ) y}{x^{3}} &= -\frac {c_{1}}{3 x^{3}} + c_{2} \end {align*}

Dividing both sides by the integrating factor \(\mu =\frac {x^{2}+1}{x^{3}}\) results in \begin {align*} y &= -\frac {c_{1}}{3 \left (x^{2}+1\right )}+\frac {c_{2} x^{3}}{x^{2}+1} \end {align*}

which simplifies to \begin {align*} y &= \frac {3 c_{2} x^{3}-c_{1}}{3 x^{2}+3} \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= \frac {3 c_{2} x^{3}-c_{1}}{3 x^{2}+3} \\ \end{align*}

Verification of solutions

\[ y = \frac {3 c_{2} x^{3}-c_{1}}{3 x^{2}+3} \] Verified OK.

3.306.2 Solving as type second_order_integrable_as_is (not using ABC version)

Writing the ode as \[ \left (x^{3}+x \right ) y^{\prime \prime }+\left (2 x^{2}-2\right ) y^{\prime }-2 x y = 0 \] Integrating both sides of the ODE w.r.t \(x\) gives \begin {align*} \int \left (\left (x^{3}+x \right ) y^{\prime \prime }+\left (2 x^{2}-2\right ) y^{\prime }-2 x y\right )d x &= 0 \\ -2 y+\frac {y^{\prime \prime } x^{2}}{2}+y^{\prime } x^{3}-y x^{2}-\frac {x^{3} y^{\prime \prime \prime }}{6} = c_{1} \end {align*}

Which is now solved for \(y\). Unable to solve this ODE.

3.306.3 Solving using Kovacic algorithm

Writing the ode as \begin {align*} \left (x^{3}+x \right ) y^{\prime \prime }+\left (2 x^{2}-2\right ) y^{\prime }-2 x y &= 0 \tag {1} \\ A y^{\prime \prime } + B y^{\prime } + C y &= 0 \tag {2} \end {align*}

Comparing (1) and (2) shows that \begin {align*} A &= x^{3}+x \\ B &= 2 x^{2}-2\tag {3} \\ C &= -2 x \end {align*}

Applying the Liouville transformation on the dependent variable gives \begin {align*} z(x) &= y e^{\int \frac {B}{2 A} \,dx} \end {align*}

Then (2) becomes \begin {align*} z''(x) = r z(x)\tag {4} \end {align*}

Where \(r\) is given by \begin {align*} r &= \frac {s}{t}\tag {5} \\ &= \frac {2 A B' - 2 B A' + B^2 - 4 A C}{4 A^2} \end {align*}

Substituting the values of \(A,B,C\) from (3) in the above and simplifying gives \begin {align*} r &= \frac {2}{x^{2}}\tag {6} \end {align*}

Comparing the above to (5) shows that \begin {align*} s &= 2\\ t &= x^{2} \end {align*}

Therefore eq. (4) becomes \begin {align*} z''(x) &= \left ( \frac {2}{x^{2}}\right ) z(x)\tag {7} \end {align*}

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation \begin {align*} y &= z \left (x \right ) e^{-\int \frac {B}{2 A} \,dx} \end {align*}

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty \). The following table summarizes these cases.

Case

Allowed pole order for \(r\)

Allowed value for \(\mathcal {O}(\infty )\)

1

\(\left \{ 0,1,2,4,6,8,\cdots \right \} \)

\(\left \{ \cdots ,-6,-4,-2,0,2,3,4,5,6,\cdots \right \} \)

2

Need to have at least one pole that is either order \(2\) or odd order greater than \(2\). Any other pole order is allowed as long as the above condition is satisfied. Hence the following set of pole orders are all allowed. \(\{1,2\}\),\(\{1,3\}\),\(\{2\}\),\(\{3\}\),\(\{3,4\}\),\(\{1,2,5\}\).

no condition

3

\(\left \{ 1,2\right \} \)

\(\left \{ 2,3,4,5,6,7,\cdots \right \} \)

Table 364: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty \) is the degree of \(t\) minus the degree of \(s\). Therefore \begin {align*} O\left (\infty \right ) &= \text {deg}(t) - \text {deg}(s) \\ &= 2 - 0 \\ &= 2 \end {align*}

The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=x^{2}\). There is a pole at \(x=0\) of order \(2\). Since there is no odd order pole larger than \(2\) and the order at \(\infty \) is \(2\) then the necessary conditions for case one are met. Since there is a pole of order \(2\) then necessary conditions for case two are met. Since pole order is not larger than \(2\) and the order at \(\infty \) is \(2\) then the necessary conditions for case three are met. Therefore \begin {align*} L &= [1, 2, 4, 6, 12] \end {align*}

Attempting to find a solution using case \(n=1\).

Looking at poles of order 2. The partial fractions decomposition of \(r\) is \[ r = \frac {2}{x^{2}} \] For the pole at \(x=0\) let \(b\) be the coefficient of \(\frac {1}{ x^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=2\). Hence \begin {alignat*} {2} [\sqrt r]_c &= 0 \\ \alpha _c^{+} &= \frac {1}{2} + \sqrt {1+4 b} &&= 2\\ \alpha _c^{-} &= \frac {1}{2} - \sqrt {1+4 b} &&= -1 \end {alignat*}

Since the order of \(r\) at \(\infty \) is 2 then \([\sqrt r]_\infty =0\). Let \(b\) be the coefficient of \(\frac {1}{x^{2}}\) in the Laurent series expansion of \(r\) at \(\infty \). which can be found by dividing the leading coefficient of \(s\) by the leading coefficient of \(t\) from \begin {alignat*} {2} r &= \frac {s}{t} &&= \frac {2}{x^{2}} \end {alignat*}

Since the \(\text {gcd}(s,t)=1\). This gives \(b=2\). Hence \begin {alignat*} {2} [\sqrt r]_\infty &= 0 \\ \alpha _{\infty }^{+} &= \frac {1}{2} + \sqrt {1+4 b} &&= 2\\ \alpha _{\infty }^{-} &= \frac {1}{2} - \sqrt {1+4 b} &&= -1 \end {alignat*}

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty \) where \(r\) is \[ r=\frac {2}{x^{2}} \]

pole \(c\) location pole order \([\sqrt r]_c\) \(\alpha _c^{+}\) \(\alpha _c^{-}\)
\(0\) \(2\) \(0\) \(2\) \(-1\)

Order of \(r\) at \(\infty \) \([\sqrt r]_\infty \) \(\alpha _\infty ^{+}\) \(\alpha _\infty ^{-}\)
\(2\) \(0\) \(2\) \(-1\)

Now that the all \([\sqrt r]_c\) and its associated \(\alpha _c^{\pm }\) have been determined for all the poles in the set \(\Gamma \) and \([\sqrt r]_\infty \) and its associated \(\alpha _\infty ^{\pm }\) have also been found, the next step is to determine possible non negative integer \(d\) from these using \begin {align*} d &= \alpha _\infty ^{s(\infty )} - \sum _{c \in \Gamma } \alpha _c^{s(c)} \end {align*}

Where \(s(c)\) is either \(+\) or \(-\) and \(s(\infty )\) is the sign of \(\alpha _\infty ^{\pm }\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup {\infty }}\) until such \(d\) is found to work in finding candidate \(\omega \). Trying \(\alpha _\infty ^{-} = -1\) then \begin {align*} d &= \alpha _\infty ^{-} - \left ( \alpha _{c_1}^{-} \right ) \\ &= -1 - \left ( -1 \right ) \\ &= 0 \end {align*}

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega \) using \begin {align*} \omega &= \sum _{c \in \Gamma } \left ( s(c) [\sqrt r]_c + \frac {\alpha _c^{s(c)}}{x-c} \right ) + s(\infty ) [\sqrt r]_\infty \end {align*}

The above gives \begin {align*} \omega &= \left ( (-)[\sqrt r]_{c_1} + \frac { \alpha _{c_1}^{-} }{x- c_1}\right ) + (-) [\sqrt r]_\infty \\ &= -\frac {1}{x} + (-) \left ( 0 \right ) \\ &= -\frac {1}{x}\\ &= -\frac {1}{x} \end {align*}

Now that \(\omega \) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=0\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation \begin {align*} p'' + 2 \omega p' + \left ( \omega ' +\omega ^2 -r\right ) p = 0 \tag {1A} \end {align*}

Let \begin {align*} p(x) &= 1\tag {2A} \end {align*}

Substituting the above in eq. (1A) gives \begin {align*} \left (0\right ) + 2 \left (-\frac {1}{x}\right ) \left (0\right ) + \left ( \left (\frac {1}{x^{2}}\right ) + \left (-\frac {1}{x}\right )^2 - \left (\frac {2}{x^{2}}\right ) \right ) &= 0\\ 0 = 0 \end {align*}

The equation is satisfied since both sides are zero. Therefore the first solution to the ode \(z'' = r z\) is \begin {align*} z_1(x) &= p e^{ \int \omega \,dx} \\ &= {\mathrm e}^{\int -\frac {1}{x}d x}\\ &= \frac {1}{x} \end {align*}

The first solution to the original ode in \(y\) is found from \begin{align*} y_1 &= z_1 e^{ \int -\frac {1}{2} \frac {B}{A} \,dx} \\ &= z_1 e^{ -\int \frac {1}{2} \frac {2 x^{2}-2}{x^{3}+x} \,dx} \\ &= z_1 e^{-\ln \left (x^{2}+1\right )+\ln \left (x \right )} \\ &= z_1 \left (\frac {x}{x^{2}+1}\right ) \\ \end{align*} Which simplifies to \[ y_1 = \frac {1}{x^{2}+1} \] The second solution \(y_2\) to the original ode is found using reduction of order \[ y_2 = y_1 \int \frac { e^{\int -\frac {B}{A} \,dx}}{y_1^2} \,dx \] Substituting gives \begin{align*} y_2 &= y_1 \int \frac { e^{\int -\frac {2 x^{2}-2}{x^{3}+x} \,dx}}{\left (y_1\right )^2} \,dx \\ &= y_1 \int \frac { e^{-2 \ln \left (x^{2}+1\right )+2 \ln \left (x \right )}}{\left (y_1\right )^2} \,dx \\ &= y_1 \left (\frac {x^{3}}{3}\right ) \\ \end{align*} Therefore the solution is

\begin{align*} y &= c_{1} y_1 + c_{2} y_2 \\ &= c_{1} \left (\frac {1}{x^{2}+1}\right ) + c_{2} \left (\frac {1}{x^{2}+1}\left (\frac {x^{3}}{3}\right )\right ) \\ \end{align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= \frac {c_{1}}{x^{2}+1}+\frac {c_{2} x^{3}}{3 x^{2}+3} \\ \end{align*}

Verification of solutions

\[ y = \frac {c_{1}}{x^{2}+1}+\frac {c_{2} x^{3}}{3 x^{2}+3} \] Verified OK.

3.306.4 Solving as exact linear second order ode ode

An ode of the form \begin {align*} p \left (x \right ) y^{\prime \prime }+q \left (x \right ) y^{\prime }+r \left (x \right ) y&=s \left (x \right ) \end {align*}

is exact if \begin {align*} p''(x) - q'(x) + r(x) &= 0 \tag {1} \end {align*}

For the given ode we have \begin {align*} p(x) &= x^{3}+x\\ q(x) &= 2 x^{2}-2\\ r(x) &= -2 x\\ s(x) &= 0 \end {align*}

Hence \begin {align*} p''(x) &= 6 x\\ q'(x) &= 4 x \end {align*}

Therefore (1) becomes \begin {align*} 6 x- \left (4 x\right ) + \left (-2 x\right )&=0 \end {align*}

Hence the ode is exact. Since we now know the ode is exact, it can be written as \begin {align*} \left (p \left (x \right ) y^{\prime }+\left (q \left (x \right )-p^{\prime }\left (x \right )\right ) y\right )' &= s(x) \end {align*}

Integrating gives \begin {align*} p \left (x \right ) y^{\prime }+\left (q \left (x \right )-p^{\prime }\left (x \right )\right ) y&=\int {s \left (x \right )\, dx} \end {align*}

Substituting the above values for \(p,q,r,s\) gives \begin {align*} \left (-x^{2}-3\right ) y+\left (x^{3}+x \right ) y^{\prime }&=c_{1} \end {align*}

We now have a first order ode to solve which is \begin {align*} \left (-x^{2}-3\right ) y+\left (x^{3}+x \right ) y^{\prime } = c_{1} \end {align*}

Entering Linear first order ODE solver. In canonical form a linear first order is \begin {align*} y^{\prime } + p(x)y &= q(x) \end {align*}

Where here \begin {align*} p(x) &=-\frac {x^{2}+3}{x \left (x^{2}+1\right )}\\ q(x) &=\frac {c_{1}}{x \left (x^{2}+1\right )} \end {align*}

Hence the ode is \begin {align*} y^{\prime }-\frac {\left (x^{2}+3\right ) y}{x \left (x^{2}+1\right )} = \frac {c_{1}}{x \left (x^{2}+1\right )} \end {align*}

The integrating factor \(\mu \) is \begin{align*} \mu &= {\mathrm e}^{\int -\frac {x^{2}+3}{x \left (x^{2}+1\right )}d x} \\ &= {\mathrm e}^{\ln \left (x^{2}+1\right )-3 \ln \left (x \right )} \\ \end{align*} Which simplifies to \[ \mu = \frac {x^{2}+1}{x^{3}} \] The ode becomes \begin {align*} \frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}}\left ( \mu y\right ) &= \left (\mu \right ) \left (\frac {c_{1}}{x \left (x^{2}+1\right )}\right ) \\ \frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}} \left (\frac {\left (x^{2}+1\right ) y}{x^{3}}\right ) &= \left (\frac {x^{2}+1}{x^{3}}\right ) \left (\frac {c_{1}}{x \left (x^{2}+1\right )}\right )\\ \mathrm {d} \left (\frac {\left (x^{2}+1\right ) y}{x^{3}}\right ) &= \left (\frac {c_{1}}{x^{4}}\right )\, \mathrm {d} x \end {align*}

Integrating gives \begin {align*} \frac {\left (x^{2}+1\right ) y}{x^{3}} &= \int {\frac {c_{1}}{x^{4}}\,\mathrm {d} x}\\ \frac {\left (x^{2}+1\right ) y}{x^{3}} &= -\frac {c_{1}}{3 x^{3}} + c_{2} \end {align*}

Dividing both sides by the integrating factor \(\mu =\frac {x^{2}+1}{x^{3}}\) results in \begin {align*} y &= -\frac {c_{1}}{3 \left (x^{2}+1\right )}+\frac {c_{2} x^{3}}{x^{2}+1} \end {align*}

which simplifies to \begin {align*} y &= \frac {3 c_{2} x^{3}-c_{1}}{3 x^{2}+3} \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= \frac {3 c_{2} x^{3}-c_{1}}{3 x^{2}+3} \\ \end{align*}

Verification of solutions

\[ y = \frac {3 c_{2} x^{3}-c_{1}}{3 x^{2}+3} \] Verified OK.

3.306.5 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left (x^{3}+x \right ) \left (\frac {d}{d x}y^{\prime }\right )+\left (2 x^{2}-2\right ) y^{\prime }-2 x y=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & \frac {d}{d x}y^{\prime } \\ \bullet & {} & \textrm {Isolate 2nd derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }=\frac {2 y}{x^{2}+1}-\frac {2 \left (x^{2}-1\right ) y^{\prime }}{x \left (x^{2}+1\right )} \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }+\frac {2 \left (x^{2}-1\right ) y^{\prime }}{x \left (x^{2}+1\right )}-\frac {2 y}{x^{2}+1}=0 \\ \square & {} & \textrm {Check to see if}\hspace {3pt} x_{0}\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & \circ & \textrm {Define functions}\hspace {3pt} \\ {} & {} & \left [P_{2}\left (x \right )=\frac {2 \left (x^{2}-1\right )}{x \left (x^{2}+1\right )}, P_{3}\left (x \right )=-\frac {2}{x^{2}+1}\right ] \\ {} & \circ & x \cdot P_{2}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x \cdot P_{2}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=-2 \\ {} & \circ & x^{2}\cdot P_{3}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x^{2}\cdot P_{3}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=0 \\ {} & \circ & x =0\textrm {is a regular singular point}\hspace {3pt} \\ & {} & \textrm {Check to see if}\hspace {3pt} x_{0}\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & {} & x_{0}=0 \\ \bullet & {} & \textrm {Multiply by denominators}\hspace {3pt} \\ {} & {} & x \left (x^{2}+1\right ) \left (\frac {d}{d x}y^{\prime }\right )+\left (2 x^{2}-2\right ) y^{\prime }-2 x y=0 \\ \bullet & {} & \textrm {Assume series solution for}\hspace {3pt} y \\ {} & {} & y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +r} \\ \square & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x \cdot y\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & x \cdot y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +r +1} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k -1 \\ {} & {} & x \cdot y=\moverset {\infty }{\munderset {k =1}{\sum }}a_{k -1} x^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{m}\cdot y^{\prime }\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =0..2 \\ {} & {} & x^{m}\cdot y^{\prime }=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) x^{k +r -1+m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +1-m \\ {} & {} & x^{m}\cdot y^{\prime }=\moverset {\infty }{\munderset {k =-1+m}{\sum }}a_{k +1-m} \left (k +1-m +r \right ) x^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{m}\cdot \left (\frac {d}{d x}y^{\prime }\right )\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =1..3 \\ {} & {} & x^{m}\cdot \left (\frac {d}{d x}y^{\prime }\right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) \left (k +r -1\right ) x^{k +r -2+m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +2-m \\ {} & {} & x^{m}\cdot \left (\frac {d}{d x}y^{\prime }\right )=\moverset {\infty }{\munderset {k =-2+m}{\sum }}a_{k +2-m} \left (k +2-m +r \right ) \left (k +1-m +r \right ) x^{k +r} \\ & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & {} & a_{0} r \left (-3+r \right ) x^{-1+r}+a_{1} \left (1+r \right ) \left (-2+r \right ) x^{r}+\left (\moverset {\infty }{\munderset {k =1}{\sum }}\left (a_{k +1} \left (k +r +1\right ) \left (k -2+r \right )+a_{k -1} \left (k +r +1\right ) \left (k -2+r \right )\right ) x^{k +r}\right )=0 \\ \bullet & {} & a_{0}\textrm {cannot be 0 by assumption, giving the indicial equation}\hspace {3pt} \\ {} & {} & r \left (-3+r \right )=0 \\ \bullet & {} & \textrm {Values of r that satisfy the indicial equation}\hspace {3pt} \\ {} & {} & r \in \left \{0, 3\right \} \\ \bullet & {} & \textrm {Each term must be 0}\hspace {3pt} \\ {} & {} & a_{1} \left (1+r \right ) \left (-2+r \right )=0 \\ \bullet & {} & \textrm {Each term in the series must be 0, giving the recursion relation}\hspace {3pt} \\ {} & {} & \left (k +r +1\right ) \left (k -2+r \right ) \left (a_{k +1}+a_{k -1}\right )=0 \\ \bullet & {} & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +1 \\ {} & {} & \left (k +r +2\right ) \left (k +r -1\right ) \left (a_{k +2}+a_{k}\right )=0 \\ \bullet & {} & \textrm {Recursion relation that defines series solution to ODE}\hspace {3pt} \\ {} & {} & a_{k +2}=-a_{k} \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =0 \\ {} & {} & a_{k +2}=-a_{k} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =0 \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k}, a_{k +2}=-a_{k}, -2 a_{1}=0\right ] \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =3 \\ {} & {} & a_{k +2}=-a_{k} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =3 \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +3}, a_{k +2}=-a_{k}, 4 a_{1}=0\right ] \\ \bullet & {} & \textrm {Combine solutions and rename parameters}\hspace {3pt} \\ {} & {} & \left [y=\left (\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k}\right )+\left (\moverset {\infty }{\munderset {k =0}{\sum }}b_{k} x^{k +3}\right ), a_{k +2}=-a_{k}, -2 a_{1}=0, b_{k +2}=-b_{k}, 4 b_{1}=0\right ] \end {array} \]

Maple trace Kovacic algorithm successful

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
trying a symmetry of the form [xi=0, eta=F(x)] 
checking if the LODE is missing y 
-> Trying a Liouvillian solution using Kovacics algorithm 
   A Liouvillian solution exists 
   Reducible group (found an exponential solution) 
<- Kovacics algorithm successful`
 

Solution by Maple

Time used: 0.015 (sec). Leaf size: 19

dsolve(x*(x^2+1)*diff(diff(y(x),x),x)+2*(x^2-1)*diff(y(x),x)-2*x*y(x)=0,y(x), singsol=all)
 

\[ y \left (x \right ) = \frac {c_{2} x^{3}+c_{1}}{x^{2}+1} \]

Solution by Mathematica

Time used: 0.034 (sec). Leaf size: 26

DSolve[-2*x*y[x] + 2*(-1 + x^2)*y'[x] + x*(1 + x^2)*y''[x] == 0,y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to \frac {c_2 x^3+3 c_1}{3 x^2+3} \]