3.394 problem 1400

3.394.1 Solving as second order bessel ode ode

Internal problem ID [9727]
Internal file name [OUTPUT/8669_Monday_June_06_2022_04_45_25_AM_45673550/index.tex]

Book: Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section: Chapter 2, linear second order
Problem number: 1400.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode"

Maple gives the following as the ode type

[[_Emden, _Fowler]]

\[ \boxed {y^{\prime \prime }-\frac {y^{\prime }}{x}+\frac {a y}{x^{6}}=0} \]

3.394.1 Solving as second order bessel ode ode

Writing the ode as \begin {align*} y^{\prime \prime } x^{2}-y^{\prime } x +\frac {a y}{x^{4}} = 0\tag {1} \end {align*}

Bessel ode has the form \begin {align*} y^{\prime \prime } x^{2}+y^{\prime } x +\left (-n^{2}+x^{2}\right ) y = 0\tag {2} \end {align*}

The generalized form of Bessel ode is given by Bowman (1958) as the following \begin {align*} y^{\prime \prime } x^{2}+\left (1-2 \alpha \right ) x y^{\prime }+\left (\beta ^{2} \gamma ^{2} x^{2 \gamma }-n^{2} \gamma ^{2}+\alpha ^{2}\right ) y = 0\tag {3} \end {align*}

With the standard solution \begin {align*} y&=x^{\alpha } \left (c_{1} \operatorname {BesselJ}\left (n , \beta \,x^{\gamma }\right )+c_{2} \operatorname {BesselY}\left (n , \beta \,x^{\gamma }\right )\right )\tag {4} \end {align*}

Comparing (3) to (1) and solving for \(\alpha ,\beta ,n,\gamma \) gives \begin {align*} \alpha &= 1\\ \beta &= \frac {\sqrt {a}}{2}\\ n &= {\frac {1}{2}}\\ \gamma &= -2 \end {align*}

Substituting all the above into (4) gives the solution as \begin {align*} y = \frac {2 c_{1} x \sin \left (\frac {\sqrt {a}}{2 x^{2}}\right )}{\sqrt {\pi }\, \sqrt {\frac {\sqrt {a}}{x^{2}}}}-\frac {2 c_{2} x \cos \left (\frac {\sqrt {a}}{2 x^{2}}\right )}{\sqrt {\pi }\, \sqrt {\frac {\sqrt {a}}{x^{2}}}} \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= \frac {2 c_{1} x \sin \left (\frac {\sqrt {a}}{2 x^{2}}\right )}{\sqrt {\pi }\, \sqrt {\frac {\sqrt {a}}{x^{2}}}}-\frac {2 c_{2} x \cos \left (\frac {\sqrt {a}}{2 x^{2}}\right )}{\sqrt {\pi }\, \sqrt {\frac {\sqrt {a}}{x^{2}}}} \\ \end{align*}

Verification of solutions

\[ y = \frac {2 c_{1} x \sin \left (\frac {\sqrt {a}}{2 x^{2}}\right )}{\sqrt {\pi }\, \sqrt {\frac {\sqrt {a}}{x^{2}}}}-\frac {2 c_{2} x \cos \left (\frac {\sqrt {a}}{2 x^{2}}\right )}{\sqrt {\pi }\, \sqrt {\frac {\sqrt {a}}{x^{2}}}} \] Verified OK.

Maple trace Kovacic algorithm successful

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
trying a symmetry of the form [xi=0, eta=F(x)] 
checking if the LODE is missing y 
-> Trying a Liouvillian solution using Kovacics algorithm 
   A Liouvillian solution exists 
   Group is reducible or imprimitive 
<- Kovacics algorithm successful`
 

Solution by Maple

Time used: 0.015 (sec). Leaf size: 35

dsolve(diff(diff(y(x),x),x) = 1/x*diff(y(x),x)-a/x^6*y(x),y(x), singsol=all)
 

\[ y \left (x \right ) = x^{2} \left (c_{1} \sinh \left (\frac {\sqrt {-a}}{2 x^{2}}\right )+c_{2} \cosh \left (\frac {\sqrt {-a}}{2 x^{2}}\right )\right ) \]

Solution by Mathematica

Time used: 0.152 (sec). Leaf size: 58

DSolve[y''[x] == -((a*y[x])/x^6) + y'[x]/x,y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to \frac {1}{2} x^2 e^{-\frac {i \sqrt {a}}{2 x^2}} \left (2 c_1 e^{\frac {i \sqrt {a}}{x^2}}-\frac {i c_2}{\sqrt {a}}\right ) \]