4.20 problem 1468

4.20.1 Maple step by step solution

Internal problem ID [9794]
Internal file name [OUTPUT/8737_Monday_June_06_2022_05_22_04_AM_97919957/index.tex]

Book: Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section: Chapter 3, linear third order
Problem number: 1468.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type

[[_3rd_order, _with_linear_symmetries]]

Unable to solve or complete the solution.

\[ \boxed {y^{\prime \prime \prime }-6 x y^{\prime \prime }+2 \left (4 x^{2}+2 a -1\right ) y^{\prime }-8 y a x=0} \] Unable to solve this ODE.

4.20.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime \prime }-6 x \left (\frac {d}{d x}y^{\prime }\right )+2 \left (4 x^{2}+2 a -1\right ) y^{\prime }-8 y a x =0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 3 \\ {} & {} & \frac {d}{d x}y^{\prime \prime } \\ \bullet & {} & \textrm {Multiply by denominators}\hspace {3pt} \\ {} & {} & \left (8 x^{2}+4 a -2\right ) y^{\prime }-6 x \left (\frac {d}{d x}y^{\prime }\right )+\frac {d}{d x}y^{\prime \prime }-8 y a x =0 \\ \bullet & {} & \textrm {Assume series solution for}\hspace {3pt} y \\ {} & {} & y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k} \\ \square & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x \cdot y\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & x \cdot y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +1} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k -1 \\ {} & {} & x \cdot y=\moverset {\infty }{\munderset {k =1}{\sum }}a_{k -1} x^{k} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{m}\cdot y^{\prime }\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =0..2 \\ {} & {} & x^{m}\cdot y^{\prime }=\moverset {\infty }{\munderset {k =\max \left (0, 1-m \right )}{\sum }}a_{k} k \,x^{k -1+m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +1-m \\ {} & {} & x^{m}\cdot y^{\prime }=\moverset {\infty }{\munderset {k =\max \left (0, 1-m \right )+m -1}{\sum }}a_{k +1-m} \left (k +1-m \right ) x^{k} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x \cdot \left (\frac {d}{d x}y^{\prime }\right )\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & x \cdot \left (\frac {d}{d x}y^{\prime }\right )=\moverset {\infty }{\munderset {k =1}{\sum }}a_{k} k \left (k -1\right ) x^{k -1} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +1 \\ {} & {} & x \cdot \left (\frac {d}{d x}y^{\prime }\right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k +1} \left (k +1\right ) k \,x^{k} \\ {} & \circ & \textrm {Convert}\hspace {3pt} \frac {d}{d x}y^{\prime \prime }\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime \prime }=\moverset {\infty }{\munderset {k =3}{\sum }}a_{k} k \left (k -1\right ) \left (k -2\right ) x^{k -3} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +3 \\ {} & {} & \frac {d}{d x}y^{\prime \prime }=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k +3} \left (k +3\right ) \left (k +2\right ) \left (k +1\right ) x^{k} \\ & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & {} & 6 a_{3}+2 a_{1} \left (2 a -1\right )+\left (\moverset {\infty }{\munderset {k =1}{\sum }}\left (a_{k +3} \left (k +3\right ) \left (k +2\right ) \left (k +1\right )+2 a_{k +1} \left (k +1\right ) \left (2 a -3 k -1\right )-8 a_{k -1} \left (a -k +1\right )\right ) x^{k}\right )=0 \\ \bullet & {} & \textrm {Each term must be 0}\hspace {3pt} \\ {} & {} & 6 a_{3}+2 a_{1} \left (2 a -1\right )=0 \\ \bullet & {} & \textrm {Each term in the series must be 0, giving the recursion relation}\hspace {3pt} \\ {} & {} & a_{k +3} \left (k +3\right ) \left (k +2\right ) \left (k +1\right )+2 a_{k +1} \left (k +1\right ) \left (2 a -3 k -1\right )-8 a_{k -1} \left (a -k +1\right )=0 \\ \bullet & {} & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +1 \\ {} & {} & a_{k +4} \left (k +4\right ) \left (k +3\right ) \left (k +2\right )+2 a_{k +2} \left (k +2\right ) \left (2 a -3 k -4\right )-8 a_{k} \left (a -k \right )=0 \\ \bullet & {} & \textrm {Recursion relation that defines the series solution to the ODE}\hspace {3pt} \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k}, a_{k +4}=-\frac {2 \left (2 a k a_{k +2}-3 k^{2} a_{k +2}-4 a_{k} a +4 a a_{k +2}+4 a_{k} k -10 k a_{k +2}-8 a_{k +2}\right )}{\left (k +4\right ) \left (k +3\right ) \left (k +2\right )}, 6 a_{3}+2 a_{1} \left (2 a -1\right )=0\right ] \end {array} \]

Maple trace

`Methods for third order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
trying high order exact linear fully integrable 
trying to convert to a linear ODE with constant coefficients 
trying differential order: 3; missing the dependent variable 
Equation is the 2nd symmetric power of diff(diff(y(x),x),x)-2*x*diff(y(x),x)+a*y(x) = 0 
-> Attempting now to solve this lower order ODE 
   trying a quadrature 
   checking if the LODE has constant coefficients 
   checking if the LODE is of Euler type 
   trying a symmetry of the form [xi=0, eta=F(x)] 
   checking if the LODE is missing y 
   -> Trying a Liouvillian solution using Kovacics algorithm 
   <- No Liouvillian solutions exists 
   -> Trying a solution in terms of special functions: 
      -> Bessel 
      -> elliptic 
      -> Legendre 
      -> Kummer 
         -> hyper3: Equivalence to 1F1 under a power @ Moebius 
         <- hyper3 successful: received ODE is equivalent to the 1F1 ODE 
      <- Kummer successful 
   <- special function solution successful`
 

Solution by Maple

Time used: 0.094 (sec). Leaf size: 59

dsolve(diff(diff(diff(y(x),x),x),x)-6*x*diff(diff(y(x),x),x)+2*(4*x^2+2*a-1)*diff(y(x),x)-8*y(x)*a*x=0,y(x), singsol=all)
 

\[ y \left (x \right ) = x^{2} \left (\operatorname {KummerU}\left (\frac {1}{2}-\frac {a}{4}, \frac {3}{2}, x^{2}\right )^{2} c_{2} +\operatorname {KummerU}\left (\frac {1}{2}-\frac {a}{4}, \frac {3}{2}, x^{2}\right ) \operatorname {KummerM}\left (\frac {1}{2}-\frac {a}{4}, \frac {3}{2}, x^{2}\right ) c_{3} +\operatorname {KummerM}\left (\frac {1}{2}-\frac {a}{4}, \frac {3}{2}, x^{2}\right )^{2} c_{1} \right ) \]

Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 57

DSolve[-8*a*x*y[x] + 2*(-1 + 2*a + 4*x^2)*y'[x] - 6*x*y''[x] + Derivative[3][y][x] == 0,y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to c_2 \operatorname {HermiteH}\left (\frac {a}{2},x\right ) \operatorname {Hypergeometric1F1}\left (-\frac {a}{4},\frac {1}{2},x^2\right )+c_1 \operatorname {HermiteH}\left (\frac {a}{2},x\right )^2+c_3 \operatorname {Hypergeometric1F1}\left (-\frac {a}{4},\frac {1}{2},x^2\right )^2 \]