4.29 problem 1477

4.29.1 Maple step by step solution

Internal problem ID [9803]
Internal file name [OUTPUT/8746_Monday_June_06_2022_05_23_07_AM_2547718/index.tex]

Book: Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section: Chapter 3, linear third order
Problem number: 1477.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type

[[_3rd_order, _with_linear_symmetries]]

Unable to solve or complete the solution.

\[ \boxed {x y^{\prime \prime \prime }+3 y^{\prime \prime }+y x=0} \] Unable to solve this ODE.

4.29.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & x \left (\frac {d}{d x}y^{\prime \prime }\right )+3 \frac {d}{d x}y^{\prime }+y x =0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 3 \\ {} & {} & \frac {d}{d x}y^{\prime \prime } \\ \square & {} & \textrm {Check to see if}\hspace {3pt} x_{0}=0\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & \circ & \textrm {Define functions}\hspace {3pt} \\ {} & {} & \left [P_{2}\left (x \right )=\frac {3}{x}, P_{3}\left (x \right )=0, P_{4}\left (x \right )=1\right ] \\ {} & \circ & x \cdot P_{2}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x \cdot P_{2}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=3 \\ {} & \circ & x^{2}\cdot P_{3}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x^{2}\cdot P_{3}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=0 \\ {} & \circ & x^{3}\cdot P_{4}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x^{3}\cdot P_{4}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=0 \\ {} & \circ & x =0\textrm {is a regular singular point}\hspace {3pt} \\ & {} & \textrm {Check to see if}\hspace {3pt} x_{0}=0\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & {} & x_{0}=0 \\ \bullet & {} & \textrm {Assume series solution for}\hspace {3pt} y \\ {} & {} & y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +r} \\ \square & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x \cdot y\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & x \cdot y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +r +1} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k -1 \\ {} & {} & x \cdot y=\moverset {\infty }{\munderset {k =1}{\sum }}a_{k -1} x^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} \frac {d}{d x}y^{\prime }\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) \left (k +r -1\right ) x^{k +r -2} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +2 \\ {} & {} & \frac {d}{d x}y^{\prime }=\moverset {\infty }{\munderset {k =-2}{\sum }}a_{k +2} \left (k +2+r \right ) \left (k +r +1\right ) x^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x \cdot \left (\frac {d}{d x}y^{\prime \prime }\right )\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & x \cdot \left (\frac {d}{d x}y^{\prime \prime }\right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) \left (k +r -1\right ) \left (k +r -2\right ) x^{k +r -2} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +2 \\ {} & {} & x \cdot \left (\frac {d}{d x}y^{\prime \prime }\right )=\moverset {\infty }{\munderset {k =-2}{\sum }}a_{k +2} \left (k +2+r \right ) \left (k +r +1\right ) \left (k +r \right ) x^{k +r} \\ & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & {} & a_{0} r \left (1+r \right ) \left (-1+r \right ) x^{-2+r}+a_{1} \left (1+r \right ) \left (2+r \right ) r \,x^{-1+r}+a_{2} \left (2+r \right ) \left (3+r \right ) \left (1+r \right ) x^{r}+\left (\moverset {\infty }{\munderset {k =1}{\sum }}\left (a_{k +2} \left (k +2+r \right ) \left (k +3+r \right ) \left (k +r +1\right )+a_{k -1}\right ) x^{k +r}\right )=0 \\ \bullet & {} & a_{0}\textrm {cannot be 0 by assumption, giving the indicial equation}\hspace {3pt} \\ {} & {} & r \left (1+r \right ) \left (-1+r \right )=0 \\ \bullet & {} & \textrm {Values of r that satisfy the indicial equation}\hspace {3pt} \\ {} & {} & r \in \left \{-1, 0, 1\right \} \\ \bullet & {} & \textrm {The coefficients of each power of}\hspace {3pt} x \hspace {3pt}\textrm {must be 0}\hspace {3pt} \\ {} & {} & \left [a_{1} \left (1+r \right ) \left (2+r \right ) r =0, a_{2} \left (2+r \right ) \left (3+r \right ) \left (1+r \right )=0\right ] \\ \bullet & {} & \textrm {Each term in the series must be 0, giving the recursion relation}\hspace {3pt} \\ {} & {} & a_{k +2} \left (k +2+r \right ) \left (k +3+r \right ) \left (k +r +1\right )+a_{k -1}=0 \\ \bullet & {} & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +1 \\ {} & {} & a_{k +3} \left (k +3+r \right ) \left (k +4+r \right ) \left (k +2+r \right )+a_{k}=0 \\ \bullet & {} & \textrm {Recursion relation that defines series solution to ODE}\hspace {3pt} \\ {} & {} & a_{k +3}=-\frac {a_{k}}{\left (k +3+r \right ) \left (k +4+r \right ) \left (k +2+r \right )} \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =-1 \\ {} & {} & a_{k +3}=-\frac {a_{k}}{\left (k +2\right ) \left (k +3\right ) \left (k +1\right )} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =-1 \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k -1}, a_{k +3}=-\frac {a_{k}}{\left (k +2\right ) \left (k +3\right ) \left (k +1\right )}, 0=0, 0=0\right ] \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =0 \\ {} & {} & a_{k +3}=-\frac {a_{k}}{\left (k +3\right ) \left (k +4\right ) \left (k +2\right )} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =0 \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k}, a_{k +3}=-\frac {a_{k}}{\left (k +3\right ) \left (k +4\right ) \left (k +2\right )}, 0=0, 6 a_{2}=0\right ] \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =1 \\ {} & {} & a_{k +3}=-\frac {a_{k}}{\left (k +4\right ) \left (k +5\right ) \left (k +3\right )} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =1 \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +1}, a_{k +3}=-\frac {a_{k}}{\left (k +4\right ) \left (k +5\right ) \left (k +3\right )}, 6 a_{1}=0, 24 a_{2}=0\right ] \\ \bullet & {} & \textrm {Combine solutions and rename parameters}\hspace {3pt} \\ {} & {} & \left [y=\left (\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k -1}\right )+\left (\moverset {\infty }{\munderset {k =0}{\sum }}b_{k} x^{k}\right )+\left (\moverset {\infty }{\munderset {k =0}{\sum }}c_{k} x^{k +1}\right ), a_{k +3}=-\frac {a_{k}}{\left (k +2\right ) \left (k +3\right ) \left (k +1\right )}, 0=0, 0=0, b_{k +3}=-\frac {b_{k}}{\left (k +3\right ) \left (k +4\right ) \left (k +2\right )}, 0=0, 6 b_{2}=0, c_{k +3}=-\frac {c_{k}}{\left (k +4\right ) \left (k +5\right ) \left (k +3\right )}, 6 c_{1}=0, 24 c_{2}=0\right ] \end {array} \]

Maple trace

`Methods for third order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
trying high order exact linear fully integrable 
trying to convert to a linear ODE with constant coefficients 
<- successful conversion to a linear ODE with constant coefficients`
 

Solution by Maple

Time used: 0.016 (sec). Leaf size: 40

dsolve(x*diff(diff(diff(y(x),x),x),x)+3*diff(diff(y(x),x),x)+x*y(x)=0,y(x), singsol=all)
 

\[ y \left (x \right ) = \frac {\left ({\mathrm e}^{\frac {3 x}{2}} \cos \left (\frac {\sqrt {3}\, x}{2}\right ) c_{3} +{\mathrm e}^{\frac {3 x}{2}} \sin \left (\frac {\sqrt {3}\, x}{2}\right ) c_{2} +c_{1} \right ) {\mathrm e}^{-x}}{x} \]

Solution by Mathematica

Time used: 0.092 (sec). Leaf size: 43

DSolve[x*y[x] + 3*y''[x] + x*Derivative[3][y][x] == 0,y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to \frac {c_1 e^{-x}+c_2 e^{\sqrt [3]{-1} x}+c_3 e^{-(-1)^{2/3} x}}{x} \]