4.45 problem 1493

4.45.1 Maple step by step solution

Internal problem ID [9819]
Internal file name [OUTPUT/8762_Monday_June_06_2022_05_24_53_AM_11906077/index.tex]

Book: Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section: Chapter 3, linear third order
Problem number: 1493.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type

[[_3rd_order, _linear, _nonhomogeneous]]

Unable to solve or complete the solution.

\[ \boxed {x^{2} y^{\prime \prime \prime }+4 y^{\prime \prime } x +\left (x^{2}+2\right ) y^{\prime }+3 y x=f \left (x \right )} \] Unable to solve this ODE.

4.45.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & x^{2} \left (\frac {d}{d x}y^{\prime \prime }\right )+4 \left (\frac {d}{d x}y^{\prime }\right ) x +\left (x^{2}+2\right ) y^{\prime }+3 y x =f \left (x \right ) \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 3 \\ {} & {} & \frac {d}{d x}y^{\prime \prime } \end {array} \]

Maple trace

`Methods for third order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying high order exact linear fully integrable 
trying differential order: 3; linear nonhomogeneous with symmetry [0,1] 
trying high order linear exact nonhomogeneous 
trying differential order: 3; missing the dependent variable 
checking if the LODE is of Euler type 
trying Louvillian solutions for 3rd order ODEs, imprimitive case 
-> pFq: Equivalence to the 3F2 or one of its 3 confluent cases under a power @ Moebius 
<- pFq successful: received ODE is equivalent to the  1F2  ODE, case  c = 0 `
 

Solution by Maple

Time used: 0.015 (sec). Leaf size: 1035

dsolve(x^2*diff(diff(diff(y(x),x),x),x)+4*x*diff(diff(y(x),x),x)+(x^2+2)*diff(y(x),x)+3*x*y(x)-f(x)=0,y(x), singsol=all)
 

\[ \text {Expression too large to display} \]

Solution by Mathematica

Time used: 1.08 (sec). Leaf size: 373

DSolve[-f[x] + 3*x*y[x] + (2 + x^2)*y'[x] + 4*x*y''[x] + x^2*Derivative[3][y][x] == 0,y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to \frac {2 \, _1F_2\left (1;\frac {1}{2},\frac {1}{2};-\frac {x^2}{4}\right ) \left (\int _1^x\frac {9 \pi (\operatorname {BesselJ}(1,K[3]) \operatorname {BesselY}(0,K[3])-\operatorname {BesselJ}(0,K[3]) \operatorname {BesselY}(1,K[3])) f(K[3]) K[3]^2}{32 \, _1F_2\left (3;\frac {5}{2},\frac {5}{2};-\frac {1}{4} K[3]^2\right ) K[3]^4-18 \left (K[3]^2+1\right ) (\pi K[3] \pmb {H}_0(K[3])-2)}dK[3]+c_3\right )}{x}+\operatorname {BesselJ}(0,x) \int _1^x\frac {9 \pi f(K[1]) \left (2 \operatorname {BesselY}(0,K[1]) \, _1F_2\left (2;\frac {3}{2},\frac {3}{2};-\frac {1}{4} K[1]^2\right ) K[1]^2+\, _1F_2\left (1;\frac {1}{2},\frac {1}{2};-\frac {1}{4} K[1]^2\right ) (\operatorname {BesselY}(0,K[1])-\operatorname {BesselY}(1,K[1]) K[1])\right )}{9 \left (K[1]^2+1\right ) (\pi K[1] \pmb {H}_0(K[1])-2)-16 \, _1F_2\left (3;\frac {5}{2},\frac {5}{2};-\frac {1}{4} K[1]^2\right ) K[1]^4}dK[1]+2 \operatorname {BesselY}(0,x) \int _1^x\frac {9 \pi f(K[2]) \left (2 \operatorname {BesselJ}(0,K[2]) \, _1F_2\left (2;\frac {3}{2},\frac {3}{2};-\frac {1}{4} K[2]^2\right ) K[2]^2+\, _1F_2\left (1;\frac {1}{2},\frac {1}{2};-\frac {1}{4} K[2]^2\right ) (\operatorname {BesselJ}(0,K[2])-\operatorname {BesselJ}(1,K[2]) K[2])\right )}{32 \, _1F_2\left (3;\frac {5}{2},\frac {5}{2};-\frac {1}{4} K[2]^2\right ) K[2]^4-18 \left (K[2]^2+1\right ) (\pi K[2] \pmb {H}_0(K[2])-2)}dK[2]+c_1 \operatorname {BesselJ}(0,x)+2 c_2 \operatorname {BesselY}(0,x) \]