4.63 problem 1513

4.63.1 Maple step by step solution

Internal problem ID [9837]
Internal file name [OUTPUT/8782_Monday_June_06_2022_05_27_19_AM_45913278/index.tex]

Book: Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section: Chapter 3, linear third order
Problem number: 1513.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type

[[_3rd_order, _with_linear_symmetries]]

Unable to solve or complete the solution.

\[ \boxed {x^{3} y^{\prime \prime \prime }-4 x^{2} y^{\prime \prime }+\left (x^{2}+8\right ) x y^{\prime }-2 \left (x^{2}+4\right ) y=0} \] Unable to solve this ODE.

4.63.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & x^{3} \left (\frac {d}{d x}y^{\prime \prime }\right )-4 x^{2} \left (\frac {d}{d x}y^{\prime }\right )+\left (x^{2}+8\right ) x y^{\prime }-2 \left (x^{2}+4\right ) y=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 3 \\ {} & {} & \frac {d}{d x}y^{\prime \prime } \\ \square & {} & \textrm {Check to see if}\hspace {3pt} x_{0}=0\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & \circ & \textrm {Define functions}\hspace {3pt} \\ {} & {} & \left [P_{2}\left (x \right )=-\frac {4}{x}, P_{3}\left (x \right )=\frac {x^{2}+8}{x^{2}}, P_{4}\left (x \right )=-\frac {2 \left (x^{2}+4\right )}{x^{3}}\right ] \\ {} & \circ & x \cdot P_{2}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x \cdot P_{2}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=-4 \\ {} & \circ & x^{2}\cdot P_{3}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x^{2}\cdot P_{3}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=8 \\ {} & \circ & x^{3}\cdot P_{4}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x^{3}\cdot P_{4}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=-8 \\ {} & \circ & x =0\textrm {is a regular singular point}\hspace {3pt} \\ & {} & \textrm {Check to see if}\hspace {3pt} x_{0}=0\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & {} & x_{0}=0 \\ \bullet & {} & \textrm {Multiply by denominators}\hspace {3pt} \\ {} & {} & \left (-2 x^{2}-8\right ) y+x^{3} \left (\frac {d}{d x}y^{\prime \prime }\right )-4 x^{2} \left (\frac {d}{d x}y^{\prime }\right )+\left (x^{2}+8\right ) x y^{\prime }=0 \\ \bullet & {} & \textrm {Assume series solution for}\hspace {3pt} y \\ {} & {} & y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +r} \\ \square & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{m}\cdot y\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =0..2 \\ {} & {} & x^{m}\cdot y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +r +m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k -m \\ {} & {} & x^{m}\cdot y=\moverset {\infty }{\munderset {k =m}{\sum }}a_{k -m} x^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{m}\cdot y^{\prime }\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =1..3 \\ {} & {} & x^{m}\cdot y^{\prime }=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) x^{k +r -1+m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +1-m \\ {} & {} & x^{m}\cdot y^{\prime }=\moverset {\infty }{\munderset {k =-1+m}{\sum }}a_{k +1-m} \left (k +1-m +r \right ) x^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{2}\cdot \left (\frac {d}{d x}y^{\prime }\right )\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & x^{2}\cdot \left (\frac {d}{d x}y^{\prime }\right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) \left (k +r -1\right ) x^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{3}\cdot \left (\frac {d}{d x}y^{\prime \prime }\right )\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & x^{3}\cdot \left (\frac {d}{d x}y^{\prime \prime }\right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) \left (k +r -1\right ) \left (k +r -2\right ) x^{k +r} \\ & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & {} & a_{0} \left (r -4\right ) \left (-1+r \right ) \left (-2+r \right ) x^{r}+a_{1} \left (r -3\right ) r \left (-1+r \right ) x^{1+r}+\left (\moverset {\infty }{\munderset {k =2}{\sum }}\left (a_{k} \left (r -4+k \right ) \left (k +r -1\right ) \left (k +r -2\right )+a_{k -2} \left (r -4+k \right )\right ) x^{k +r}\right )=0 \\ \bullet & {} & a_{0}\textrm {cannot be 0 by assumption, giving the indicial equation}\hspace {3pt} \\ {} & {} & \left (r -4\right ) \left (-1+r \right ) \left (-2+r \right )=0 \\ \bullet & {} & \textrm {Values of r that satisfy the indicial equation}\hspace {3pt} \\ {} & {} & r \in \left \{1, 2, 4\right \} \\ \bullet & {} & \textrm {Each term must be 0}\hspace {3pt} \\ {} & {} & a_{1} \left (r -3\right ) r \left (-1+r \right )=0 \\ \bullet & {} & \textrm {Solve for the dependent coefficient(s)}\hspace {3pt} \\ {} & {} & a_{1}=0 \\ \bullet & {} & \textrm {Each term in the series must be 0, giving the recursion relation}\hspace {3pt} \\ {} & {} & \left (r -4+k \right ) \left (a_{k} \left (k +r -1\right ) \left (k +r -2\right )+a_{k -2}\right )=0 \\ \bullet & {} & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +2 \\ {} & {} & \left (k +r -2\right ) \left (a_{k +2} \left (k +1+r \right ) \left (k +r \right )+a_{k}\right )=0 \\ \bullet & {} & \textrm {Recursion relation that defines series solution to ODE}\hspace {3pt} \\ {} & {} & a_{k +2}=-\frac {a_{k}}{\left (k +1+r \right ) \left (k +r \right )} \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =1 \\ {} & {} & a_{k +2}=-\frac {a_{k}}{\left (k +2\right ) \left (k +1\right )} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =1 \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +1}, a_{k +2}=-\frac {a_{k}}{\left (k +2\right ) \left (k +1\right )}, a_{1}=0\right ] \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =2 \\ {} & {} & a_{k +2}=-\frac {a_{k}}{\left (k +3\right ) \left (k +2\right )} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =2 \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +2}, a_{k +2}=-\frac {a_{k}}{\left (k +3\right ) \left (k +2\right )}, a_{1}=0\right ] \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =4 \\ {} & {} & a_{k +2}=-\frac {a_{k}}{\left (k +5\right ) \left (k +4\right )} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =4 \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +4}, a_{k +2}=-\frac {a_{k}}{\left (k +5\right ) \left (k +4\right )}, a_{1}=0\right ] \\ \bullet & {} & \textrm {Combine solutions and rename parameters}\hspace {3pt} \\ {} & {} & \left [y=\left (\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +1}\right )+\left (\moverset {\infty }{\munderset {k =0}{\sum }}b_{k} x^{k +2}\right )+\left (\moverset {\infty }{\munderset {k =0}{\sum }}c_{k} x^{k +4}\right ), a_{k +2}=-\frac {a_{k}}{\left (k +2\right ) \left (k +1\right )}, a_{1}=0, b_{k +2}=-\frac {b_{k}}{\left (k +3\right ) \left (k +2\right )}, b_{1}=0, c_{k +2}=-\frac {c_{k}}{\left (k +5\right ) \left (k +4\right )}, c_{1}=0\right ] \end {array} \]

Maple trace Kovacic algorithm successful

`Methods for third order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
trying high order exact linear fully integrable 
trying to convert to a linear ODE with constant coefficients 
trying differential order: 3; missing the dependent variable 
Equation is the LCLM of -2/x*y(x)+diff(y(x),x), 1/x^2*(x^2+2)*y(x)-2/x*diff(y(x),x)+diff(diff(y(x),x),x) 
trying differential order: 1; missing the dependent variable 
checking if the LODE is of Euler type 
<- LODE of Euler type successful 
Euler equation successful 
   trying a quadrature 
   checking if the LODE has constant coefficients 
   checking if the LODE is of Euler type 
   trying a symmetry of the form [xi=0, eta=F(x)] 
   checking if the LODE is missing y 
   -> Trying a Liouvillian solution using Kovacics algorithm 
      A Liouvillian solution exists 
      Group is reducible or imprimitive 
   <- Kovacics algorithm successful 
<- solving the LCLM ode successful `
 

Solution by Maple

Time used: 0.031 (sec). Leaf size: 18

dsolve(x^3*diff(diff(diff(y(x),x),x),x)-4*x^2*diff(diff(y(x),x),x)+(x^2+8)*x*diff(y(x),x)-2*(x^2+4)*y(x)=0,y(x), singsol=all)
 

\[ y \left (x \right ) = x \left (\cos \left (x \right ) c_{3} +\sin \left (x \right ) c_{2} +c_{1} x \right ) \]

Solution by Mathematica

Time used: 0.079 (sec). Leaf size: 23

DSolve[-2*(4 + x^2)*y[x] + x*(8 + x^2)*y'[x] - 4*x^2*y''[x] + x^3*Derivative[3][y][x] == 0,y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to x (c_1 x+c_3 \cos (x)-c_2 \sin (x)) \]