5.32 problem 1567

5.32.1 Maple step by step solution

Internal problem ID [9889]
Internal file name [OUTPUT/8836_Monday_June_06_2022_05_35_50_AM_40353532/index.tex]

Book: Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section: Chapter 4, linear fourth order
Problem number: 1567.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_ODE_non_constant_coefficients_of_type_Euler"

Maple gives the following as the ode type

[[_high_order, _missing_y]]

\[ \boxed {x^{4} y^{\prime \prime \prime \prime }+8 x^{3} y^{\prime \prime \prime }+12 x^{2} y^{\prime \prime }=0} \] This is Euler ODE of higher order. Let \(y = x^{\lambda }\). Hence \begin {align*} y^{\prime } &= \lambda \,x^{\lambda -1}\\ y^{\prime \prime } &= \lambda \left (\lambda -1\right ) x^{\lambda -2}\\ y^{\prime \prime \prime } &= \lambda \left (\lambda -1\right ) \left (\lambda -2\right ) x^{\lambda -3}\\ y^{\prime \prime \prime \prime } &= \lambda \left (\lambda -1\right ) \left (\lambda -2\right ) \left (\lambda -3\right ) x^{\lambda -4} \end {align*}

Substituting these back into \[ x^{4} y^{\prime \prime \prime \prime }+8 x^{3} y^{\prime \prime \prime }+12 x^{2} y^{\prime \prime } = 0 \] gives \[ 12 x^{2} \lambda \left (\lambda -1\right ) x^{\lambda -2}+8 x^{3} \lambda \left (\lambda -1\right ) \left (\lambda -2\right ) x^{\lambda -3}+x^{4} \lambda \left (\lambda -1\right ) \left (\lambda -2\right ) \left (\lambda -3\right ) x^{\lambda -4} = 0 \] Which simplifies to \[ 12 \lambda \left (\lambda -1\right ) x^{\lambda }+8 \lambda \left (\lambda -1\right ) \left (\lambda -2\right ) x^{\lambda }+\lambda \left (\lambda -1\right ) \left (\lambda -2\right ) \left (\lambda -3\right ) x^{\lambda } = 0 \] And since \(x^{\lambda }\neq 0\) then dividing through by \(x^{\lambda }\), the above becomes

\[ 12 \lambda \left (\lambda -1\right )+8 \lambda \left (\lambda -1\right ) \left (\lambda -2\right )+\lambda \left (\lambda -1\right ) \left (\lambda -2\right ) \left (\lambda -3\right ) = 0 \] Simplifying gives the characteristic equation as \[ \lambda ^{4}+2 \lambda ^{3}-\lambda ^{2}-2 \lambda = 0 \] Solving the above gives the following roots \begin {align*} \lambda _1 &= 0\\ \lambda _2 &= 1\\ \lambda _3 &= -2\\ \lambda _4 &= -1 \end {align*}

This table summarises the result

root multiplicity type of root
\(-1\) \(1\) real root
\(0\) \(1\) real root
\(-2\) \(1\) real root
\(1\) \(1\) real root

The solution is generated by going over the above table. For each real root \(\lambda \) of multiplicity one generates a \(c_1x^{\lambda }\) basis solution. Each real root of multiplicty two, generates \(c_1x^{\lambda }\) and \(c_2x^{\lambda } \ln \left (x \right )\) basis solutions. Each real root of multiplicty three, generates \(c_1x^{\lambda }\) and \(c_2x^{\lambda } \ln \left (x \right )\) and \(c_3x^{\lambda } \ln \left (x \right )^{2}\) basis solutions, and so on. Each complex root \(\alpha \pm i \beta \) of multiplicity one generates \(x^{\alpha } \left (c_1\cos (\beta \ln \left (x \right ))+c_2\sin (\beta \ln \left (x \right ))\right )\) basis solutions. And each complex root \(\alpha \pm i \beta \) of multiplicity two generates \(\ln \left (x \right ) x^{\alpha }\left (c_1\cos (\beta \ln \left (x \right ))+c_2\sin (\beta \ln \left (x \right ))\right )\) basis solutions. And each complex root \(\alpha \pm i \beta \) of multiplicity three generates \(\ln \left (x \right )^{2} x^{\alpha }\left (c_1\cos (\beta \ln \left (x \right ))+c_2\sin (\beta \ln \left (x \right ))\right )\) basis solutions. And so on. Using the above show that the solution is

\[ y = \frac {c_{1}}{x}+c_{2} +\frac {c_{3}}{x^{2}}+c_{4} x \] The fundamental set of solutions for the homogeneous solution are the following \begin {align*} y_1 &= \frac {1}{x}\\ y_2 &= 1\\ y_3 &= \frac {1}{x^{2}}\\ y_4 &= x \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= \frac {c_{1}}{x}+c_{2} +\frac {c_{3}}{x^{2}}+c_{4} x \\ \end{align*}

Verification of solutions

\[ y = \frac {c_{1}}{x}+c_{2} +\frac {c_{3}}{x^{2}}+c_{4} x \] Verified OK.

5.32.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & x^{4} \left (\frac {d}{d x}\frac {d}{d x}y^{\prime \prime }\right )+8 x^{3} \left (\frac {d}{d x}y^{\prime \prime }\right )+12 x^{2} \left (\frac {d}{d x}y^{\prime }\right )=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 4 \\ {} & {} & \frac {d}{d x}\frac {d}{d x}y^{\prime \prime } \\ \bullet & {} & \textrm {Isolate 4th derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}\frac {d}{d x}y^{\prime \prime }=-\frac {4 \left (2 x \left (\frac {d}{d x}y^{\prime \prime }\right )+3 \frac {d}{d x}y^{\prime }\right )}{x^{2}} \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & \frac {d}{d x}\frac {d}{d x}y^{\prime \prime }+\frac {8 \left (\frac {d}{d x}y^{\prime \prime }\right )}{x}+\frac {12 \left (\frac {d}{d x}y^{\prime }\right )}{x^{2}}=0 \\ \bullet & {} & \textrm {Multiply by denominators of the ODE}\hspace {3pt} \\ {} & {} & x^{2} \left (\frac {d}{d x}\frac {d}{d x}y^{\prime \prime }\right )+8 x \left (\frac {d}{d x}y^{\prime \prime }\right )+12 \frac {d}{d x}y^{\prime }=0 \\ \bullet & {} & \textrm {Make a change of variables}\hspace {3pt} \\ {} & {} & t =\ln \left (x \right ) \\ \square & {} & \textrm {Substitute the change of variables back into the ODE}\hspace {3pt} \\ {} & \circ & \textrm {Calculate the}\hspace {3pt} \hspace {3pt}\textrm {1st}\hspace {3pt} \hspace {3pt}\textrm {derivative of}\hspace {3pt} \hspace {3pt}\textrm {y}\hspace {3pt} \hspace {3pt}\textrm {with respect to}\hspace {3pt} \hspace {3pt}\textrm {x}\hspace {3pt} \hspace {3pt}\textrm {, using the chain rule}\hspace {3pt} \\ {} & {} & y^{\prime }=\left (\frac {d}{d t}y \left (t \right )\right ) t^{\prime }\left (x \right ) \\ {} & \circ & \textrm {Compute derivative}\hspace {3pt} \\ {} & {} & y^{\prime }=\frac {\frac {d}{d t}y \left (t \right )}{x} \\ {} & \circ & \textrm {Calculate the}\hspace {3pt} \hspace {3pt}\textrm {2nd}\hspace {3pt} \hspace {3pt}\textrm {derivative of}\hspace {3pt} \hspace {3pt}\textrm {y}\hspace {3pt} \hspace {3pt}\textrm {with respect to}\hspace {3pt} \hspace {3pt}\textrm {x}\hspace {3pt} \hspace {3pt}\textrm {, using the chain rule}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }=\left (\frac {d}{d t}\frac {d}{d t}y \left (t \right )\right ) {t^{\prime }\left (x \right )}^{2}+\left (\frac {d}{d x}t^{\prime }\left (x \right )\right ) \left (\frac {d}{d t}y \left (t \right )\right ) \\ {} & \circ & \textrm {Compute derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }=\frac {\frac {d}{d t}\frac {d}{d t}y \left (t \right )}{x^{2}}-\frac {\frac {d}{d t}y \left (t \right )}{x^{2}} \\ {} & \circ & \textrm {Calculate the}\hspace {3pt} \hspace {3pt}\textrm {3rd}\hspace {3pt} \hspace {3pt}\textrm {derivative of}\hspace {3pt} \hspace {3pt}\textrm {y}\hspace {3pt} \hspace {3pt}\textrm {with respect to}\hspace {3pt} \hspace {3pt}\textrm {x}\hspace {3pt} \hspace {3pt}\textrm {, using the chain rule}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime \prime }=\left (\frac {d}{d t}\frac {d^{2}}{d t^{2}}y \left (t \right )\right ) {t^{\prime }\left (x \right )}^{3}+3 t^{\prime }\left (x \right ) \left (\frac {d}{d x}t^{\prime }\left (x \right )\right ) \left (\frac {d}{d t}\frac {d}{d t}y \left (t \right )\right )+\left (\frac {d}{d x}t^{\prime \prime }\left (x \right )\right ) \left (\frac {d}{d t}y \left (t \right )\right ) \\ {} & \circ & \textrm {Compute derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime \prime }=\frac {\frac {d}{d t}\frac {d^{2}}{d t^{2}}y \left (t \right )}{x^{3}}-\frac {3 \left (\frac {d}{d t}\frac {d}{d t}y \left (t \right )\right )}{x^{3}}+\frac {2 \left (\frac {d}{d t}y \left (t \right )\right )}{x^{3}} \\ {} & \circ & \textrm {Calculate the}\hspace {3pt} \hspace {3pt}\textrm {4th}\hspace {3pt} \hspace {3pt}\textrm {derivative of}\hspace {3pt} \hspace {3pt}\textrm {y}\hspace {3pt} \hspace {3pt}\textrm {with respect to}\hspace {3pt} \hspace {3pt}\textrm {x}\hspace {3pt} \hspace {3pt}\textrm {, using the chain rule}\hspace {3pt} \\ {} & {} & \frac {d}{d x}\frac {d}{d x}y^{\prime \prime }=\left (\frac {d}{d t}\frac {d}{d t}\frac {d^{2}}{d t^{2}}y \left (t \right )\right ) {t^{\prime }\left (x \right )}^{4}+3 {t^{\prime }\left (x \right )}^{2} \left (\frac {d}{d x}t^{\prime }\left (x \right )\right ) \left (\frac {d}{d t}\frac {d^{2}}{d t^{2}}y \left (t \right )\right )+3 \left (\frac {d}{d x}t^{\prime }\left (x \right )\right )^{2} \left (\frac {d}{d t}\frac {d}{d t}y \left (t \right )\right )+3 \left (\left (\frac {d}{d x}t^{\prime \prime }\left (x \right )\right ) \left (\frac {d}{d t}\frac {d}{d t}y \left (t \right )\right )+\left (\frac {d}{d t}\frac {d^{2}}{d t^{2}}y \left (t \right )\right ) t^{\prime }\left (x \right ) \left (\frac {d}{d x}t^{\prime }\left (x \right )\right )\right ) t^{\prime }\left (x \right )+\left (\frac {d}{d x}\frac {d}{d x}t^{\prime \prime }\left (x \right )\right ) \left (\frac {d}{d t}y \left (t \right )\right )+\left (\frac {d}{d t}\frac {d}{d t}y \left (t \right )\right ) t^{\prime }\left (x \right ) \left (\frac {d}{d x}t^{\prime \prime }\left (x \right )\right ) \\ {} & \circ & \textrm {Compute derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}\frac {d}{d x}y^{\prime \prime }=\frac {\frac {d}{d t}\frac {d}{d t}\frac {d^{2}}{d t^{2}}y \left (t \right )}{x^{4}}-\frac {3 \left (\frac {d}{d t}\frac {d^{2}}{d t^{2}}y \left (t \right )\right )}{x^{4}}+\frac {5 \left (\frac {d}{d t}\frac {d}{d t}y \left (t \right )\right )}{x^{4}}+\frac {3 \left (\frac {2 \left (\frac {d}{d t}\frac {d}{d t}y \left (t \right )\right )}{x^{3}}-\frac {\frac {d}{d t}\frac {d^{2}}{d t^{2}}y \left (t \right )}{x^{3}}\right )}{x}-\frac {6 \left (\frac {d}{d t}y \left (t \right )\right )}{x^{4}} \\ & {} & \textrm {Substitute the change of variables back into the ODE}\hspace {3pt} \\ {} & {} & x^{2} \left (\frac {\frac {d}{d t}\frac {d}{d t}\frac {d^{2}}{d t^{2}}y \left (t \right )}{x^{4}}-\frac {3 \left (\frac {d}{d t}\frac {d^{2}}{d t^{2}}y \left (t \right )\right )}{x^{4}}+\frac {5 \left (\frac {d}{d t}\frac {d}{d t}y \left (t \right )\right )}{x^{4}}+\frac {3 \left (\frac {2 \left (\frac {d}{d t}\frac {d}{d t}y \left (t \right )\right )}{x^{3}}-\frac {\frac {d}{d t}\frac {d^{2}}{d t^{2}}y \left (t \right )}{x^{3}}\right )}{x}-\frac {6 \left (\frac {d}{d t}y \left (t \right )\right )}{x^{4}}\right )+8 x \left (\frac {\frac {d}{d t}\frac {d^{2}}{d t^{2}}y \left (t \right )}{x^{3}}-\frac {3 \left (\frac {d}{d t}\frac {d}{d t}y \left (t \right )\right )}{x^{3}}+\frac {2 \left (\frac {d}{d t}y \left (t \right )\right )}{x^{3}}\right )+\frac {12 \left (\frac {d}{d t}\frac {d}{d t}y \left (t \right )\right )}{x^{2}}-\frac {12 \left (\frac {d}{d t}y \left (t \right )\right )}{x^{2}}=0 \\ \bullet & {} & \textrm {Simplify}\hspace {3pt} \\ {} & {} & \frac {\frac {d}{d t}\frac {d}{d t}\frac {d^{2}}{d t^{2}}y \left (t \right )+2 \frac {d}{d t}\frac {d^{2}}{d t^{2}}y \left (t \right )-\frac {d}{d t}\frac {d}{d t}y \left (t \right )-2 \frac {d}{d t}y \left (t \right )}{x^{2}}=0 \\ \bullet & {} & \textrm {Isolate 4th derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d t}\frac {d}{d t}\frac {d^{2}}{d t^{2}}y \left (t \right )=-2 \frac {d}{d t}\frac {d^{2}}{d t^{2}}y \left (t \right )+\frac {d}{d t}\frac {d}{d t}y \left (t \right )+2 \frac {d}{d t}y \left (t \right ) \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y \left (t \right )\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & \frac {d}{d t}\frac {d}{d t}\frac {d^{2}}{d t^{2}}y \left (t \right )+2 \frac {d}{d t}\frac {d^{2}}{d t^{2}}y \left (t \right )-\frac {d}{d t}\frac {d}{d t}y \left (t \right )-2 \frac {d}{d t}y \left (t \right )=0 \\ \square & {} & \textrm {Convert linear ODE into a system of first order ODEs}\hspace {3pt} \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{1}\left (t \right ) \\ {} & {} & y_{1}\left (t \right )=y \left (t \right ) \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{2}\left (t \right ) \\ {} & {} & y_{2}\left (t \right )=\frac {d}{d t}y \left (t \right ) \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{3}\left (t \right ) \\ {} & {} & y_{3}\left (t \right )=\frac {d}{d t}\frac {d}{d t}y \left (t \right ) \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{4}\left (t \right ) \\ {} & {} & y_{4}\left (t \right )=\frac {d}{d t}\frac {d^{2}}{d t^{2}}y \left (t \right ) \\ {} & \circ & \textrm {Isolate for}\hspace {3pt} \frac {d}{d t}y_{4}\left (t \right )\hspace {3pt}\textrm {using original ODE}\hspace {3pt} \\ {} & {} & \frac {d}{d t}y_{4}\left (t \right )=-2 y_{4}\left (t \right )+y_{3}\left (t \right )+2 y_{2}\left (t \right ) \\ & {} & \textrm {Convert linear ODE into a system of first order ODEs}\hspace {3pt} \\ {} & {} & \left [y_{2}\left (t \right )=\frac {d}{d t}y_{1}\left (t \right ), y_{3}\left (t \right )=\frac {d}{d t}y_{2}\left (t \right ), y_{4}\left (t \right )=\frac {d}{d t}y_{3}\left (t \right ), \frac {d}{d t}y_{4}\left (t \right )=-2 y_{4}\left (t \right )+y_{3}\left (t \right )+2 y_{2}\left (t \right )\right ] \\ \bullet & {} & \textrm {Define vector}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}\left (t \right )=\left [\begin {array}{c} y_{1}\left (t \right ) \\ y_{2}\left (t \right ) \\ y_{3}\left (t \right ) \\ y_{4}\left (t \right ) \end {array}\right ] \\ \bullet & {} & \textrm {System to solve}\hspace {3pt} \\ {} & {} & \frac {d}{d t}{\moverset {\rightarrow }{y}}\left (t \right )=\left [\begin {array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 2 & 1 & -2 \end {array}\right ]\cdot {\moverset {\rightarrow }{y}}\left (t \right ) \\ \bullet & {} & \textrm {Define the coefficient matrix}\hspace {3pt} \\ {} & {} & A =\left [\begin {array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 2 & 1 & -2 \end {array}\right ] \\ \bullet & {} & \textrm {Rewrite the system as}\hspace {3pt} \\ {} & {} & \frac {d}{d t}{\moverset {\rightarrow }{y}}\left (t \right )=A \cdot {\moverset {\rightarrow }{y}}\left (t \right ) \\ \bullet & {} & \textrm {To solve the system, find the eigenvalues and eigenvectors of}\hspace {3pt} A \\ \bullet & {} & \textrm {Eigenpairs of}\hspace {3pt} A \\ {} & {} & \left [\left [-2, \left [\begin {array}{c} -\frac {1}{8} \\ \frac {1}{4} \\ -\frac {1}{2} \\ 1 \end {array}\right ]\right ], \left [-1, \left [\begin {array}{c} -1 \\ 1 \\ -1 \\ 1 \end {array}\right ]\right ], \left [0, \left [\begin {array}{c} 1 \\ 0 \\ 0 \\ 0 \end {array}\right ]\right ], \left [1, \left [\begin {array}{c} 1 \\ 1 \\ 1 \\ 1 \end {array}\right ]\right ]\right ] \\ \bullet & {} & \textrm {Consider eigenpair}\hspace {3pt} \\ {} & {} & \left [-2, \left [\begin {array}{c} -\frac {1}{8} \\ \frac {1}{4} \\ -\frac {1}{2} \\ 1 \end {array}\right ]\right ] \\ \bullet & {} & \textrm {Solution to homogeneous system from eigenpair}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}_{1}={\mathrm e}^{-2 t}\cdot \left [\begin {array}{c} -\frac {1}{8} \\ \frac {1}{4} \\ -\frac {1}{2} \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {Consider eigenpair}\hspace {3pt} \\ {} & {} & \left [-1, \left [\begin {array}{c} -1 \\ 1 \\ -1 \\ 1 \end {array}\right ]\right ] \\ \bullet & {} & \textrm {Solution to homogeneous system from eigenpair}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}_{2}={\mathrm e}^{-t}\cdot \left [\begin {array}{c} -1 \\ 1 \\ -1 \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {Consider eigenpair}\hspace {3pt} \\ {} & {} & \left [0, \left [\begin {array}{c} 1 \\ 0 \\ 0 \\ 0 \end {array}\right ]\right ] \\ \bullet & {} & \textrm {Solution to homogeneous system from eigenpair}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}_{3}=\left [\begin {array}{c} 1 \\ 0 \\ 0 \\ 0 \end {array}\right ] \\ \bullet & {} & \textrm {Consider eigenpair}\hspace {3pt} \\ {} & {} & \left [1, \left [\begin {array}{c} 1 \\ 1 \\ 1 \\ 1 \end {array}\right ]\right ] \\ \bullet & {} & \textrm {Solution to homogeneous system from eigenpair}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}_{4}={\mathrm e}^{t}\cdot \left [\begin {array}{c} 1 \\ 1 \\ 1 \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {General solution to the system of ODEs}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}=c_{1} {\moverset {\rightarrow }{y}}_{1}+c_{2} {\moverset {\rightarrow }{y}}_{2}+c_{3} {\moverset {\rightarrow }{y}}_{3}+c_{4} {\moverset {\rightarrow }{y}}_{4} \\ \bullet & {} & \textrm {Substitute solutions into the general solution}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}=c_{1} {\mathrm e}^{-2 t}\cdot \left [\begin {array}{c} -\frac {1}{8} \\ \frac {1}{4} \\ -\frac {1}{2} \\ 1 \end {array}\right ]+c_{2} {\mathrm e}^{-t}\cdot \left [\begin {array}{c} -1 \\ 1 \\ -1 \\ 1 \end {array}\right ]+c_{4} {\mathrm e}^{t}\cdot \left [\begin {array}{c} 1 \\ 1 \\ 1 \\ 1 \end {array}\right ]+\left [\begin {array}{c} c_{3} \\ 0 \\ 0 \\ 0 \end {array}\right ] \\ \bullet & {} & \textrm {First component of the vector is the solution to the ODE}\hspace {3pt} \\ {} & {} & y \left (t \right )=-\frac {\left (-8 c_{4} {\mathrm e}^{3 t}-8 c_{3} {\mathrm e}^{2 t}+8 c_{2} {\mathrm e}^{t}+c_{1} \right ) {\mathrm e}^{-2 t}}{8} \\ \bullet & {} & \textrm {Change variables back using}\hspace {3pt} t =\ln \left (x \right ) \\ {} & {} & y=-\frac {-8 c_{4} x^{3}-8 c_{3} x^{2}+8 c_{2} x +c_{1}}{8 x^{2}} \\ \bullet & {} & \textrm {Simplify}\hspace {3pt} \\ {} & {} & y=c_{4} x +c_{3} -\frac {c_{2}}{x}-\frac {c_{1}}{8 x^{2}} \end {array} \]

Maple trace

`Methods for high order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
<- LODE of Euler type successful`
 

Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

dsolve(x^4*diff(diff(diff(diff(y(x),x),x),x),x)+8*x^3*diff(diff(diff(y(x),x),x),x)+12*x^2*diff(diff(y(x),x),x)=0,y(x), singsol=all)
 

\[ y \left (x \right ) = c_{1} +\frac {c_{2}}{x^{2}}+\frac {c_{3}}{x}+c_{4} x \]

Solution by Mathematica

Time used: 0.03 (sec). Leaf size: 27

DSolve[12*x^2*y''[x] + 8*x^3*Derivative[3][y][x] + x^4*Derivative[4][y][x] == 0,y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to \frac {3 c_2 x+c_1}{6 x^2}+c_4 x+c_3 \]