7.26 problem 1616 (6.26)

7.26.1 Solving as second order ode missing x ode

Internal problem ID [9938]
Internal file name [OUTPUT/8885_Monday_June_06_2022_05_45_25_AM_66038354/index.tex]

Book: Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section: Chapter 6, non-linear second order
Problem number: 1616 (6.26).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_x"

Maple gives the following as the ode type

[[_2nd_order, _missing_x]]

Unable to solve or complete the solution.

\[ \boxed {y^{\prime \prime }+a y^{\prime }+b y^{n}+\frac {\left (a^{2}-1\right ) y}{4}=0} \]

7.26.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable \(y\) an independent variable. Using \begin {align*} y' &= p(y) \end {align*}

Then \begin {align*} y'' &= \frac {dp}{dx}\\ &= \frac {dy}{dx} \frac {dp}{dy}\\ &= p \frac {dp}{dy} \end {align*}

Hence the ode becomes \begin {align*} p \left (y \right ) \left (\frac {d}{d y}p \left (y \right )\right )+a p \left (y \right )+\left (b \,y^{n -1}+\frac {a^{2}}{4}-\frac {1}{4}\right ) y = 0 \end {align*}

Which is now solved as first order ode for \(p(y)\). Unable to determine ODE type.

Unable to solve. Terminating

Maple trace

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying 2nd order Liouville 
trying 2nd order WeierstrassP 
trying 2nd order JacobiSN 
differential order: 2; trying a linearization to 3rd order 
trying 2nd order ODE linearizable_by_differentiation 
trying 2nd order, 2 integrating factors of the form mu(x,y) 
trying differential order: 2; missing variables 
`, `-> Computing symmetries using: way = 3 
`, `-> Computing symmetries using: way = exp_sym 
-> Calling odsolve with the ODE`, (diff(_b(_a), _a))*_b(_a)+a*_b(_a)+b*_a^n+(1/4)*_a*a^2-(1/4)*_a = 0, _b(_a)`   *** Sublevel 2 *** 
   Methods for first order ODEs: 
   --- Trying classification methods --- 
   trying a quadrature 
   trying 1st order linear 
   trying Bernoulli 
   trying separable 
   trying inverse linear 
   trying homogeneous types: 
   trying Chini 
   differential order: 1; looking for linear symmetries 
   trying exact 
   trying Abel 
   Looking for potential symmetries 
   Looking for potential symmetries 
   Looking for potential symmetries 
   trying inverse_Riccati 
   trying an equivalence to an Abel ODE 
   differential order: 1; trying a linearization to 2nd order 
   --- trying a change of variables {x -> y(x), y(x) -> x} 
   differential order: 1; trying a linearization to 2nd order 
   trying 1st order ODE linearizable_by_differentiation 
   --- Trying Lie symmetry methods, 1st order --- 
   `, `-> Computing symmetries using: way = 3 
   `, `-> Computing symmetries using: way = 4 
   `, `-> Computing symmetries using: way = 2 
   trying symmetry patterns for 1st order ODEs 
   -> trying a symmetry pattern of the form [F(x)*G(y), 0] 
   -> trying a symmetry pattern of the form [0, F(x)*G(y)] 
   -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] 
   `, `-> Computing symmetries using: way = HINT 
      -> Calling odsolve with the ODE`, diff(y(x), x), y(x)`         *** Sublevel 3 *** 
         Methods for first order ODEs: 
         --- Trying classification methods --- 
         trying a quadrature 
         trying 1st order linear 
         <- 1st order linear successful 
      -> Calling odsolve with the ODE`, diff(y(x), x)+y(x)*(4*b*x^n*n+x*a^2-x)/(x*(x*a^2+4*b*x^n-x)), y(x)`         *** Sublevel 3 * 
         Methods for first order ODEs: 
         --- Trying classification methods --- 
         trying a quadrature 
         trying 1st order linear 
         <- 1st order linear successful 
   `, `-> Computing symmetries using: way = HINT 
      -> Calling odsolve with the ODE`, diff(y(x), x)-(1/4)*K[1]*(a-1)*(a+1)/(a*x), y(x)`         *** Sublevel 3 *** 
         Methods for first order ODEs: 
         --- Trying classification methods --- 
         trying a quadrature 
         <- quadrature successful 
   -> trying a symmetry pattern of the form [F(x),G(x)] 
   -> trying a symmetry pattern of the form [F(y),G(y)] 
   -> trying a symmetry pattern of the form [F(x)+G(y), 0] 
   -> trying a symmetry pattern of the form [0, F(x)+G(y)] 
   -> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)] 
   -> trying a symmetry pattern of conformal type 
-> trying 2nd order, dynamical_symmetries, fully reducible to Abel through one integrating factor of the form G(x,y)/(1+H(x,y)*y)^2 
   --- trying a change of variables {x -> y(x), y(x) -> x} and re-entering methods for dynamical symmetries --- 
   -> trying 2nd order, dynamical_symmetries, fully reducible to Abel through one integrating factor of the form G(x,y)/(1+H(x,y)*y) 
trying 2nd order, integrating factors of the form mu(x,y)/(y)^n, only the singular cases 
trying differential order: 2; exact nonlinear 
trying 2nd order, integrating factor of the form mu(x,y) 
-> trying 2nd order, the S-function method 
   -> trying a change of variables {x -> y(x), y(x) -> x} and re-entering methods for the S-function 
   -> trying 2nd order, the S-function method 
   -> trying 2nd order, No Point Symmetries Class V 
      --- trying a change of variables {x -> y(x), y(x) -> x} and re-entering methods for dynamical symmetries --- 
      -> trying 2nd order, No Point Symmetries Class V 
   -> trying 2nd order, No Point Symmetries Class V 
      --- trying a change of variables {x -> y(x), y(x) -> x} and re-entering methods for dynamical symmetries --- 
      -> trying 2nd order, No Point Symmetries Class V 
   -> trying 2nd order, No Point Symmetries Class V 
      --- trying a change of variables {x -> y(x), y(x) -> x} and re-entering methods for dynamical symmetries --- 
      -> trying 2nd order, No Point Symmetries Class V 
trying 2nd order, integrating factor of the form mu(x,y)/(y)^n, only the general case 
-> trying 2nd order, dynamical_symmetries, only a reduction of order through one integrating factor of the form G(x,y)/(1+H(x,y)*y)^ 
   --- trying a change of variables {x -> y(x), y(x) -> x} and re-entering methods for dynamical symmetries --- 
   -> trying 2nd order, dynamical_symmetries, only a reduction of order through one integrating factor of the form G(x,y)/(1+H(x,y)* 
--- Trying Lie symmetry methods, 2nd order --- 
`, `-> Computing symmetries using: way = 3 
`, `-> Computing symmetries using: way = 5 
`, `-> Computing symmetries using: way = formal 
            *** Sublevel 2 *** 
            Methods for first order ODEs: 
            --- Trying classification methods --- 
            trying a quadrature 
            trying 1st order linear 
            <- 1st order linear successful 
   -> Calling odsolve with the ODE`, diff(y(x), x), y(x)`      *** Sublevel 2 *** 
      Methods for first order ODEs: 
      --- Trying classification methods --- 
      trying a quadrature 
      trying 1st order linear 
      <- 1st order linear successful`
 

Solution by Maple

dsolve(diff(diff(y(x),x),x)+a*diff(y(x),x)+b*y(x)^n + 1/4*(a^2-1)*y(x)=0,y(x), singsol=all)
 

\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[((-1 + a^2)*y[x])/4 + b*y[x]^n + a*y'[x] + y''[x] == 0,y[x],x,IncludeSingularSolutions -> True]
 

Not solved