7.107 problem 1698 (book 6.107)

7.107.1 Solving as second order integrable as is ode
7.107.2 Solving as second order ode missing x ode
7.107.3 Solving as type second_order_integrable_as_is (not using ABC version)
7.107.4 Solving as exact nonlinear second order ode ode
7.107.5 Maple step by step solution

Internal problem ID [10019]
Internal file name [OUTPUT/8966_Monday_June_06_2022_06_05_06_AM_11039039/index.tex]

Book: Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section: Chapter 6, non-linear second order
Problem number: 1698 (book 6.107).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_integrable_as_is", "second_order_ode_missing_x", "exact nonlinear second order ode"

Maple gives the following as the ode type

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

\[ \boxed {y^{\prime \prime } y+{y^{\prime }}^{2}=a} \]

7.107.1 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t \(x\) gives \begin {align*} \int \left (y^{\prime \prime } y+{y^{\prime }}^{2}\right )d x &= \int a d x\\ y^{\prime } y = a x + c_{1} \end {align*}

Which is now solved for \(y\). In canonical form the ODE is \begin {align*} y' &= F(x,y)\\ &= f( x) g(y)\\ &= \frac {a x +c_{1}}{y} \end {align*}

Where \(f(x)=a x +c_{1}\) and \(g(y)=\frac {1}{y}\). Integrating both sides gives \begin{align*} \frac {1}{\frac {1}{y}} \,dy &= a x +c_{1} \,d x \\ \int { \frac {1}{\frac {1}{y}} \,dy} &= \int {a x +c_{1} \,d x} \\ \frac {y^{2}}{2}&=\frac {1}{2} a \,x^{2}+c_{1} x +c_{2} \\ \end{align*} The solution is \[ \frac {y^{2}}{2}-\frac {a \,x^{2}}{2}-c_{1} x -c_{2} = 0 \]

Summary

The solution(s) found are the following \begin{align*} \tag{1} \frac {y^{2}}{2}-\frac {a \,x^{2}}{2}-c_{1} x -c_{2} &= 0 \\ \end{align*}

Verification of solutions

\[ \frac {y^{2}}{2}-\frac {a \,x^{2}}{2}-c_{1} x -c_{2} = 0 \] Verified OK.

7.107.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable \(y\) an independent variable. Using \begin {align*} y' &= p(y) \end {align*}

Then \begin {align*} y'' &= \frac {dp}{dx}\\ &= \frac {dy}{dx} \frac {dp}{dy}\\ &= p \frac {dp}{dy} \end {align*}

Hence the ode becomes \begin {align*} p \left (y \right ) \left (\frac {d}{d y}p \left (y \right )\right ) y +p \left (y \right )^{2} = a \end {align*}

Which is now solved as first order ode for \(p(y)\). In canonical form the ODE is \begin {align*} p' &= F(y,p)\\ &= f( y) g(p)\\ &= -\frac {p^{2}-a}{p y} \end {align*}

Where \(f(y)=-\frac {1}{y}\) and \(g(p)=\frac {p^{2}-a}{p}\). Integrating both sides gives \begin{align*} \frac {1}{\frac {p^{2}-a}{p}} \,dp &= -\frac {1}{y} \,d y \\ \int { \frac {1}{\frac {p^{2}-a}{p}} \,dp} &= \int {-\frac {1}{y} \,d y} \\ \frac {\ln \left (p^{2}-a \right )}{2}&=-\ln \left (y \right )+c_{1} \\ \end{align*} Raising both side to exponential gives \begin {align*} \sqrt {p^{2}-a} &= {\mathrm e}^{-\ln \left (y \right )+c_{1}} \end {align*}

Which simplifies to \begin {align*} \sqrt {p^{2}-a} &= \frac {c_{2}}{y} \end {align*}

Which simplifies to \[ \sqrt {p \left (y \right )^{2}-a} = \frac {c_{2} {\mathrm e}^{c_{1}}}{y} \] The solution is \[ \sqrt {p \left (y \right )^{2}-a} = \frac {c_{2} {\mathrm e}^{c_{1}}}{y} \] For solution (1) found earlier, since \(p=y^{\prime }\) then we now have a new first order ode to solve which is \begin {align*} \sqrt {{y^{\prime }}^{2}-a} = \frac {c_{2} {\mathrm e}^{c_{1}}}{y} \end {align*}

Solving the given ode for \(y^{\prime }\) results in \(2\) differential equations to solve. Each one of these will generate a solution. The equations generated are \begin {align*} y^{\prime }&=\frac {\sqrt {c_{2}^{2} {\mathrm e}^{2 c_{1}}+y^{2} a}}{y} \tag {1} \\ y^{\prime }&=-\frac {\sqrt {c_{2}^{2} {\mathrm e}^{2 c_{1}}+y^{2} a}}{y} \tag {2} \end {align*}

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives \begin{align*} \int \frac {y}{\sqrt {c_{2}^{2} {\mathrm e}^{2 c_{1}}+a \,y^{2}}}d y &= \int d x \\ \frac {\sqrt {c_{2}^{2} {\mathrm e}^{2 c_{1}}+y^{2} a}}{a}&=x +c_{3} \\ \end{align*} Solving equation (2)

Integrating both sides gives \begin{align*} \int -\frac {y}{\sqrt {c_{2}^{2} {\mathrm e}^{2 c_{1}}+a \,y^{2}}}d y &= \int d x \\ -\frac {\sqrt {c_{2}^{2} {\mathrm e}^{2 c_{1}}+y^{2} a}}{a}&=x +c_{4} \\ \end{align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} \frac {\sqrt {c_{2}^{2} {\mathrm e}^{2 c_{1}}+y^{2} a}}{a} &= x +c_{3} \\ \tag{2} -\frac {\sqrt {c_{2}^{2} {\mathrm e}^{2 c_{1}}+y^{2} a}}{a} &= x +c_{4} \\ \end{align*}

Verification of solutions

\[ \frac {\sqrt {c_{2}^{2} {\mathrm e}^{2 c_{1}}+y^{2} a}}{a} = x +c_{3} \] Verified OK.

\[ -\frac {\sqrt {c_{2}^{2} {\mathrm e}^{2 c_{1}}+y^{2} a}}{a} = x +c_{4} \] Verified OK.

7.107.3 Solving as type second_order_integrable_as_is (not using ABC version)

Writing the ode as \[ y^{\prime \prime } y+{y^{\prime }}^{2} = a \] Integrating both sides of the ODE w.r.t \(x\) gives \begin {align*} \int \left (y^{\prime \prime } y+{y^{\prime }}^{2}\right )d x &= \int a d x\\ y^{\prime } y = a x +c_{1} \end {align*}

Which is now solved for \(y\). In canonical form the ODE is \begin {align*} y' &= F(x,y)\\ &= f( x) g(y)\\ &= \frac {a x +c_{1}}{y} \end {align*}

Where \(f(x)=a x +c_{1}\) and \(g(y)=\frac {1}{y}\). Integrating both sides gives \begin{align*} \frac {1}{\frac {1}{y}} \,dy &= a x +c_{1} \,d x \\ \int { \frac {1}{\frac {1}{y}} \,dy} &= \int {a x +c_{1} \,d x} \\ \frac {y^{2}}{2}&=\frac {1}{2} a \,x^{2}+c_{1} x +c_{2} \\ \end{align*} The solution is \[ \frac {y^{2}}{2}-\frac {a \,x^{2}}{2}-c_{1} x -c_{2} = 0 \]

Summary

The solution(s) found are the following \begin{align*} \tag{1} \frac {y^{2}}{2}-\frac {a \,x^{2}}{2}-c_{1} x -c_{2} &= 0 \\ \end{align*}

Verification of solutions

\[ \frac {y^{2}}{2}-\frac {a \,x^{2}}{2}-c_{1} x -c_{2} = 0 \] Verified OK.

7.107.4 Solving as exact nonlinear second order ode ode

An exact non-linear second order ode has the form \begin {align*} a_{2} \left (x , y, y^{\prime }\right ) y^{\prime \prime }+a_{1} \left (x , y, y^{\prime }\right ) y^{\prime }+a_{0} \left (x , y, y^{\prime }\right )&=0 \end {align*}

Where the following conditions are satisfied \begin {align*} \frac {\partial a_2}{\partial y} &= \frac {\partial a_1}{\partial y'}\\ \frac {\partial a_2}{\partial x} &= \frac {\partial a_0}{\partial y'}\\ \frac {\partial a_1}{\partial x} &= \frac {\partial a_0}{\partial y} \end {align*}

Looking at the the ode given we see that \begin {align*} a_2 &= y\\ a_1 &= y^{\prime }\\ a_0 &= -a \end {align*}

Applying the conditions to the above shows this is a nonlinear exact second order ode. Therefore it can be reduced to first order ode given by \begin {align*} \int {a_2\,d y'} + \int {a_1\,d y} + \int {a_0\,d x} &= c_{1}\\ \int {y\,d y'} + \int {y^{\prime }\,d y} + \int {-a\,d x} &= c_{1} \end {align*}

Which results in \begin {align*} 2 y^{\prime } y-a x = c_{1} \end {align*}

Which is now solved In canonical form the ODE is \begin {align*} y' &= F(x,y)\\ &= f( x) g(y)\\ &= \frac {\frac {a x}{2}+\frac {c_{1}}{2}}{y} \end {align*}

Where \(f(x)=\frac {a x}{2}+\frac {c_{1}}{2}\) and \(g(y)=\frac {1}{y}\). Integrating both sides gives \begin{align*} \frac {1}{\frac {1}{y}} \,dy &= \frac {a x}{2}+\frac {c_{1}}{2} \,d x \\ \int { \frac {1}{\frac {1}{y}} \,dy} &= \int {\frac {a x}{2}+\frac {c_{1}}{2} \,d x} \\ \frac {y^{2}}{2}&=\frac {1}{4} a \,x^{2}+\frac {1}{2} c_{1} x +c_{2} \\ \end{align*} The solution is \[ \frac {y^{2}}{2}-\frac {a \,x^{2}}{4}-\frac {c_{1} x}{2}-c_{2} = 0 \]

Summary

The solution(s) found are the following \begin{align*} \tag{1} \frac {y^{2}}{2}-\frac {a \,x^{2}}{4}-\frac {c_{1} x}{2}-c_{2} &= 0 \\ \end{align*}

Verification of solutions

\[ \frac {y^{2}}{2}-\frac {a \,x^{2}}{4}-\frac {c_{1} x}{2}-c_{2} = 0 \] Verified OK.

7.107.5 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left (\frac {d}{d x}y^{\prime }\right ) y+{y^{\prime }}^{2}=a \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & \frac {d}{d x}y^{\prime } \\ \bullet & {} & \textrm {Define new dependent variable}\hspace {3pt} u \\ {} & {} & u \left (x \right )=y^{\prime } \\ \bullet & {} & \textrm {Compute}\hspace {3pt} \frac {d}{d x}y^{\prime } \\ {} & {} & u^{\prime }\left (x \right )=y^{\prime \prime } \\ \bullet & {} & \textrm {Use chain rule on the lhs}\hspace {3pt} \\ {} & {} & y^{\prime } \left (\frac {d}{d y}u \left (y \right )\right )=y^{\prime \prime } \\ \bullet & {} & \textrm {Substitute in the definition of}\hspace {3pt} u \\ {} & {} & u \left (y \right ) \left (\frac {d}{d y}u \left (y \right )\right )=y^{\prime \prime } \\ \bullet & {} & \textrm {Make substitutions}\hspace {3pt} y^{\prime }=u \left (y \right ),\frac {d}{d x}y^{\prime }=u \left (y \right ) \left (\frac {d}{d y}u \left (y \right )\right )\hspace {3pt}\textrm {to reduce order of ODE}\hspace {3pt} \\ {} & {} & u \left (y \right ) \left (\frac {d}{d y}u \left (y \right )\right ) y +u \left (y \right )^{2}=a \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d y}u \left (y \right )=\frac {-u \left (y \right )^{2}+a}{u \left (y \right ) y} \\ \bullet & {} & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {\left (\frac {d}{d y}u \left (y \right )\right ) u \left (y \right )}{-u \left (y \right )^{2}+a}=\frac {1}{y} \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} y \\ {} & {} & \int \frac {\left (\frac {d}{d y}u \left (y \right )\right ) u \left (y \right )}{-u \left (y \right )^{2}+a}d y =\int \frac {1}{y}d y +c_{1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & -\frac {\ln \left (u \left (y \right )^{2}-a \right )}{2}=\ln \left (y \right )+c_{1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} u \left (y \right ) \\ {} & {} & \left \{u \left (y \right )=\frac {\sqrt {a \,y^{2} \left ({\mathrm e}^{c_{1}}\right )^{2}+1}}{{\mathrm e}^{c_{1}} y}, u \left (y \right )=-\frac {\sqrt {a \,y^{2} \left ({\mathrm e}^{c_{1}}\right )^{2}+1}}{{\mathrm e}^{c_{1}} y}\right \} \\ \bullet & {} & \textrm {Solve 1st ODE for}\hspace {3pt} u \left (y \right ) \\ {} & {} & u \left (y \right )=\frac {\sqrt {a \,y^{2} \left ({\mathrm e}^{c_{1}}\right )^{2}+1}}{{\mathrm e}^{c_{1}} y} \\ \bullet & {} & \textrm {Revert to original variables with substitution}\hspace {3pt} u \left (y \right )=y^{\prime },y =y \\ {} & {} & y^{\prime }=\frac {\sqrt {a y^{2} \left ({\mathrm e}^{c_{1}}\right )^{2}+1}}{{\mathrm e}^{c_{1}} y} \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & y^{\prime }=\frac {\sqrt {a y^{2} \left ({\mathrm e}^{c_{1}}\right )^{2}+1}}{{\mathrm e}^{c_{1}} y} \\ \bullet & {} & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {y^{\prime } y}{\sqrt {a y^{2} \left ({\mathrm e}^{c_{1}}\right )^{2}+1}}=\frac {1}{{\mathrm e}^{c_{1}}} \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int \frac {y^{\prime } y}{\sqrt {a y^{2} \left ({\mathrm e}^{c_{1}}\right )^{2}+1}}d x =\int \frac {1}{{\mathrm e}^{c_{1}}}d x +c_{2} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & \frac {\sqrt {a y^{2} \left ({\mathrm e}^{c_{1}}\right )^{2}+1}}{a \left ({\mathrm e}^{c_{1}}\right )^{2}}=\frac {x}{{\mathrm e}^{c_{1}}}+c_{2} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} y \\ {} & {} & \left \{y=\frac {\sqrt {a \left (\left ({\mathrm e}^{c_{1}}\right )^{4} c_{2}^{2} a^{2}+2 \left ({\mathrm e}^{c_{1}}\right )^{3} c_{2} a^{2} x +\left ({\mathrm e}^{c_{1}}\right )^{2} a^{2} x^{2}-1\right )}}{a \,{\mathrm e}^{c_{1}}}, y=-\frac {\sqrt {a \left (\left ({\mathrm e}^{c_{1}}\right )^{4} c_{2}^{2} a^{2}+2 \left ({\mathrm e}^{c_{1}}\right )^{3} c_{2} a^{2} x +\left ({\mathrm e}^{c_{1}}\right )^{2} a^{2} x^{2}-1\right )}}{a \,{\mathrm e}^{c_{1}}}\right \} \\ \bullet & {} & \textrm {Solve 2nd ODE for}\hspace {3pt} u \left (y \right ) \\ {} & {} & u \left (y \right )=-\frac {\sqrt {a \,y^{2} \left ({\mathrm e}^{c_{1}}\right )^{2}+1}}{{\mathrm e}^{c_{1}} y} \\ \bullet & {} & \textrm {Revert to original variables with substitution}\hspace {3pt} u \left (y \right )=y^{\prime },y =y \\ {} & {} & y^{\prime }=-\frac {\sqrt {a y^{2} \left ({\mathrm e}^{c_{1}}\right )^{2}+1}}{{\mathrm e}^{c_{1}} y} \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & y^{\prime }=-\frac {\sqrt {a y^{2} \left ({\mathrm e}^{c_{1}}\right )^{2}+1}}{{\mathrm e}^{c_{1}} y} \\ \bullet & {} & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {y^{\prime } y}{\sqrt {a y^{2} \left ({\mathrm e}^{c_{1}}\right )^{2}+1}}=-\frac {1}{{\mathrm e}^{c_{1}}} \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int \frac {y^{\prime } y}{\sqrt {a y^{2} \left ({\mathrm e}^{c_{1}}\right )^{2}+1}}d x =\int -\frac {1}{{\mathrm e}^{c_{1}}}d x +c_{2} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & \frac {\sqrt {a y^{2} \left ({\mathrm e}^{c_{1}}\right )^{2}+1}}{a \left ({\mathrm e}^{c_{1}}\right )^{2}}=-\frac {x}{{\mathrm e}^{c_{1}}}+c_{2} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} y \\ {} & {} & \left \{y=\frac {\sqrt {a \left (\left ({\mathrm e}^{c_{1}}\right )^{4} c_{2}^{2} a^{2}-2 \left ({\mathrm e}^{c_{1}}\right )^{3} c_{2} a^{2} x +\left ({\mathrm e}^{c_{1}}\right )^{2} a^{2} x^{2}-1\right )}}{a \,{\mathrm e}^{c_{1}}}, y=-\frac {\sqrt {a \left (\left ({\mathrm e}^{c_{1}}\right )^{4} c_{2}^{2} a^{2}-2 \left ({\mathrm e}^{c_{1}}\right )^{3} c_{2} a^{2} x +\left ({\mathrm e}^{c_{1}}\right )^{2} a^{2} x^{2}-1\right )}}{a \,{\mathrm e}^{c_{1}}}\right \} \end {array} \]

Maple trace

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying 2nd order Liouville 
trying 2nd order WeierstrassP 
trying 2nd order JacobiSN 
differential order: 2; trying a linearization to 3rd order 
trying 2nd order ODE linearizable_by_differentiation 
trying 2nd order, 2 integrating factors of the form mu(x,y) 
trying a quadrature 
<- quadrature successful 
<- 2nd order, 2 integrating factors of the form mu(x,y) successful`
 

Solution by Maple

Time used: 0.016 (sec). Leaf size: 39

dsolve(diff(diff(y(x),x),x)*y(x)+diff(y(x),x)^2-a=0,y(x), singsol=all)
 

\begin{align*} y \left (x \right ) &= \sqrt {a \,x^{2}-2 c_{1} x +2 c_{2}} \\ y \left (x \right ) &= -\sqrt {a \,x^{2}-2 c_{1} x +2 c_{2}} \\ \end{align*}

Solution by Mathematica

Time used: 22.188 (sec). Leaf size: 117

DSolve[-a + y'[x]^2 + y[x]*y''[x] == 0,y[x],x,IncludeSingularSolutions -> True]
 

\begin{align*} y(x)\to -\frac {\sqrt {a^2 (x+c_2){}^2-e^{2 c_1}}}{\sqrt {a}} \\ y(x)\to \frac {\sqrt {a^2 (x+c_2){}^2-e^{2 c_1}}}{\sqrt {a}} \\ y(x)\to -\frac {\sqrt {a^2 (x+c_2){}^2}}{\sqrt {a}} \\ y(x)\to \frac {\sqrt {a^2 (x+c_2){}^2}}{\sqrt {a}} \\ \end{align*}