7.139 problem 1730 (book 6.139)

Internal problem ID [10051]
Internal file name [OUTPUT/8998_Monday_June_06_2022_06_10_35_AM_49388683/index.tex]

Book: Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section: Chapter 6, non-linear second order
Problem number: 1730 (book 6.139).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type

[NONE]

Unable to solve or complete the solution.

\[ \boxed {2 y^{\prime \prime } y-{y^{\prime }}^{2}+y^{2} f \left (x \right )=-a} \]

Maple trace

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying 2nd order Liouville 
trying 2nd order WeierstrassP 
trying 2nd order JacobiSN 
differential order: 2; trying a linearization to 3rd order 
trying 2nd order ODE linearizable_by_differentiation 
-> Calling odsolve with the ODE`, diff(diff(diff(y(x), x), x), x)+(1/2)*(diff(f(x), x))*y(x)+(diff(y(x), x))*f(x), y(x)`   *** Suble 
   Methods for third order ODEs: 
   --- Trying classification methods --- 
   trying a quadrature 
   checking if the LODE has constant coefficients 
   checking if the LODE is of Euler type 
   trying high order exact linear fully integrable 
   trying to convert to a linear ODE with constant coefficients 
   trying differential order: 3; missing the dependent variable 
   Equation is the 2nd symmetric power of diff(diff(y(x),x),x)+1/4*f(x)*y(x) = 0 
   -> Attempting now to solve this lower order ODE 
      trying a symmetry of the form [xi=0, eta=F(x)] 
      checking if the LODE is missing y 
      -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius 
      -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f) 
      -> Trying changes of variables to rationalize or make the ODE simpler 
         trying a symmetry of the form [xi=0, eta=F(x)] 
         checking if the LODE is missing y 
         -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius 
         -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f) 
            trying a symmetry of the form [xi=0, eta=F(x)] 
            trying 2nd order exact linear 
            trying symmetries linear in x and y(x) 
            trying to convert to a linear ODE with constant coefficients 
      <- unable to find a useful change of variables 
         trying 2nd order exact linear 
         trying symmetries linear in x and y(x) 
         trying to convert to a linear ODE with constant coefficients 
         trying to convert to an ODE of Bessel type 
         -> trying reduction of order to Riccati 
            trying Riccati sub-methods: 
               trying Riccati_symmetries 
               -> trying a symmetry pattern of the form [F(x)*G(y), 0] 
               -> trying a symmetry pattern of the form [0, F(x)*G(y)] 
               -> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)] 
trying 2nd order, 2 integrating factors of the form mu(x,y) 
trying differential order: 2; missing variables 
-> trying 2nd order, dynamical_symmetries, fully reducible to Abel through one integrating factor of the form G(x,y)/(1+H(x,y)*y)^2 
   --- trying a change of variables {x -> y(x), y(x) -> x} and re-entering methods for dynamical symmetries --- 
   -> trying 2nd order, dynamical_symmetries, fully reducible to Abel through one integrating factor of the form G(x,y)/(1+H(x,y)*y) 
trying 2nd order, integrating factors of the form mu(x,y)/(y)^n, only the singular cases 
trying symmetries linear in x and y(x) 
trying differential order: 2; exact nonlinear 
trying 2nd order, integrating factor of the form mu(y) 
trying 2nd order, integrating factor of the form mu(x,y) 
trying 2nd order, integrating factor of the form mu(x,y)/(y)^n, only the general case 
trying 2nd order, integrating factor of the form mu(y,y) 
trying differential order: 2; mu polynomial in y 
trying 2nd order, integrating factor of the form mu(x,y) 
differential order: 2; looking for linear symmetries 
-> trying 2nd order, the S-function method 
   -> trying a change of variables {x -> y(x), y(x) -> x} and re-entering methods for the S-function 
   -> trying 2nd order, the S-function method 
   -> trying 2nd order, No Point Symmetries Class V 
      --- trying a change of variables {x -> y(x), y(x) -> x} and re-entering methods for dynamical symmetries --- 
      -> trying 2nd order, No Point Symmetries Class V 
   -> trying 2nd order, No Point Symmetries Class V 
      --- trying a change of variables {x -> y(x), y(x) -> x} and re-entering methods for dynamical symmetries --- 
      -> trying 2nd order, No Point Symmetries Class V 
   -> trying 2nd order, No Point Symmetries Class V 
      --- trying a change of variables {x -> y(x), y(x) -> x} and re-entering methods for dynamical symmetries --- 
      -> trying 2nd order, No Point Symmetries Class V 
trying 2nd order, integrating factor of the form mu(x,y)/(y)^n, only the general case 
-> trying 2nd order, dynamical_symmetries, only a reduction of order through one integrating factor of the form G(x,y)/(1+H(x,y)*y)^ 
   --- trying a change of variables {x -> y(x), y(x) -> x} and re-entering methods for dynamical symmetries --- 
   -> trying 2nd order, dynamical_symmetries, only a reduction of order through one integrating factor of the form G(x,y)/(1+H(x,y)* 
--- Trying Lie symmetry methods, 2nd order --- 
`, `-> Computing symmetries using: way = 3 
`, `-> Computing symmetries using: way = 5 
`, `-> Computing symmetries using: way = formal 
            *** Sublevel 2 *** 
            Methods for first order ODEs: 
            --- Trying classification methods --- 
            trying a quadrature 
            trying 1st order linear 
            <- 1st order linear successful 
   -> Calling odsolve with the ODE`, diff(diff(diff(y(x), x), x), x)+(diff(y(x), x))*f(x)+(1/2)*(diff(f(x), x))*y(x), y(x)`      *** 
      Methods for third order ODEs: 
      --- Trying classification methods --- 
      trying a quadrature 
      checking if the LODE has constant coefficients 
      checking if the LODE is of Euler type 
      trying high order exact linear fully integrable 
      trying to convert to a linear ODE with constant coefficients 
      trying differential order: 3; missing the dependent variable 
      Equation is the 2nd symmetric power of diff(diff(y(x),x),x)+1/4*f(x)*y(x) = 0 
      -> Attempting now to solve this lower order ODE 
         trying a symmetry of the form [xi=0, eta=F(x)] 
         checking if the LODE is missing y 
         -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius 
         -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f) 
         -> Trying changes of variables to rationalize or make the ODE simpler 
            trying a symmetry of the form [xi=0, eta=F(x)] 
            checking if the LODE is missing y 
            -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius 
            -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f) 
               trying a symmetry of the form [xi=0, eta=F(x)] 
               trying 2nd order exact linear 
               trying symmetries linear in x and y(x) 
               trying to convert to a linear ODE with constant coefficients 
         <- unable to find a useful change of variables 
            trying 2nd order exact linear 
            trying symmetries linear in x and y(x) 
            trying to convert to a linear ODE with constant coefficients 
            trying to convert to an ODE of Bessel type
 

Solution by Maple

dsolve(2*diff(diff(y(x),x),x)*y(x)-diff(y(x),x)^2+y(x)^2*f(x)+a=0,y(x), singsol=all)
 

\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[a + f[x]*y[x]^2 - y'[x]^2 + 2*y[x]*y''[x] == 0,y[x],x,IncludeSingularSolutions -> True]
 

Not solved