7.224 problem 1815 (book 6.224)

Internal problem ID [10136]
Internal file name [OUTPUT/9083_Monday_June_06_2022_06_27_33_AM_24088736/index.tex]

Book: Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section: Chapter 6, non-linear second order
Problem number: 1815 (book 6.224).
ODE order: 2.
ODE degree: 0.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type

[[_2nd_order, _missing_x]]

Unable to solve or complete the solution.

\[ \boxed {h \left (y\right ) y^{\prime \prime }+a D\left (h \right )\left (y\right ) {y^{\prime }}^{2}+j \left (y\right )=0} \]

Maple trace

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying 2nd order Liouville 
trying 2nd order WeierstrassP 
trying 2nd order JacobiSN 
differential order: 2; trying a linearization to 3rd order 
trying 2nd order ODE linearizable_by_differentiation 
trying 2nd order, 2 integrating factors of the form mu(x,y) 
trying differential order: 2; missing variables 
`, `-> Computing symmetries using: way = 3 
`, `-> Computing symmetries using: way = exp_sym 
-> Calling odsolve with the ODE`, (diff(_b(_a), _a))*_b(_a)+(a*(diff(h(_a), _a))*_b(_a)^2+j(_a))/h(_a) = 0, _b(_a)`   *** Sublevel 2 
   Methods for first order ODEs: 
   --- Trying classification methods --- 
   trying a quadrature 
   trying 1st order linear 
   trying Bernoulli 
   <- Bernoulli successful 
<- differential order: 2; canonical coordinates successful 
<- differential order 2; missing variables successful`
 

Solution by Maple

Time used: 0.016 (sec). Leaf size: 79

dsolve(h(y(x))*diff(diff(y(x),x),x)+a*D(h)(y(x))*diff(y(x),x)^2+j(y(x))=0,y(x), singsol=all)
 

\begin{align*} \int _{}^{y \left (x \right )}\frac {h \left (\textit {\_b} \right )^{a}}{\sqrt {-2 \left (\int j \left (\textit {\_b} \right ) h \left (\textit {\_b} \right )^{-1+2 a}d \textit {\_b} \right )+c_{1}}}d \textit {\_b} -x -c_{2} &= 0 \\ -\left (\int _{}^{y \left (x \right )}\frac {h \left (\textit {\_b} \right )^{a}}{\sqrt {-2 \left (\int j \left (\textit {\_b} \right ) h \left (\textit {\_b} \right )^{-1+2 a}d \textit {\_b} \right )+c_{1}}}d \textit {\_b} \right )-x -c_{2} &= 0 \\ \end{align*}

Solution by Mathematica

Time used: 0.935 (sec). Leaf size: 362

DSolve[j[y[x]] + a*h[y[x]]*y'[x]^2 + h[y[x]]*y''[x] == 0,y[x],x,IncludeSingularSolutions -> True]
 

\begin{align*} y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}-\frac {e^{a K[2]}}{\sqrt {c_1+2 \int _1^{K[2]}-\frac {e^{2 a K[1]} j(K[1])}{h(K[1])}dK[1]}}dK[2]\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {e^{a K[3]}}{\sqrt {c_1+2 \int _1^{K[3]}-\frac {e^{2 a K[1]} j(K[1])}{h(K[1])}dK[1]}}dK[3]\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}-\frac {e^{a K[2]}}{\sqrt {2 \int _1^{K[2]}-\frac {e^{2 a K[1]} j(K[1])}{h(K[1])}dK[1]-c_1}}dK[2]\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}-\frac {e^{a K[2]}}{\sqrt {c_1+2 \int _1^{K[2]}-\frac {e^{2 a K[1]} j(K[1])}{h(K[1])}dK[1]}}dK[2]\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {e^{a K[3]}}{\sqrt {2 \int _1^{K[3]}-\frac {e^{2 a K[1]} j(K[1])}{h(K[1])}dK[1]-c_1}}dK[3]\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {e^{a K[3]}}{\sqrt {c_1+2 \int _1^{K[3]}-\frac {e^{2 a K[1]} j(K[1])}{h(K[1])}dK[1]}}dK[3]\&\right ][x+c_2] \\ \end{align*}