1.482 problem 485

1.482.1 Maple step by step solution

Internal problem ID [8819]
Internal file name [OUTPUT/7754_Sunday_June_05_2022_11_57_44_PM_78139059/index.tex]

Book: Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section: Chapter 1, linear first order
Problem number: 485.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type

[_rational]

\[ \boxed {a x y {y^{\prime }}^{2}-\left (y^{2} a +b \,x^{2}+c \right ) y^{\prime }+b x y=0} \] Solving the given ode for \(y^{\prime }\) results in \(2\) differential equations to solve. Each one of these will generate a solution. The equations generated are \begin {align*} y^{\prime }&=\frac {y^{2} a +b \,x^{2}+c +\sqrt {y^{4} a^{2}-2 a \,x^{2} y^{2} b +b^{2} x^{4}+2 y^{2} a c +2 b c \,x^{2}+c^{2}}}{2 a x y} \tag {1} \\ y^{\prime }&=\frac {y^{2} a +b \,x^{2}+c -\sqrt {y^{4} a^{2}-2 a \,x^{2} y^{2} b +b^{2} x^{4}+2 y^{2} a c +2 b c \,x^{2}+c^{2}}}{2 a x y} \tag {2} \end {align*}

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as \begin {align*} y^{\prime }&=\frac {a \,y^{2}+b \,x^{2}+c +\sqrt {a^{2} y^{4}-2 a \,x^{2} y^{2} b +b^{2} x^{4}+2 y^{2} a c +2 b c \,x^{2}+c^{2}}}{2 a x y}\\ y^{\prime }&= \omega \left ( x,y\right ) \end {align*}

The condition of Lie symmetry is the linearized PDE given by \begin {align*} \eta _{x}+\omega \left ( \eta _{y}-\xi _{x}\right ) -\omega ^{2}\xi _{y}-\omega _{x}\xi -\omega _{y}\eta =0\tag {A} \end {align*}

The type of this ode is not in the lookup table. To determine \(\xi ,\eta \) then (A) is solved using ansatz. Making bivariate polynomials of degree 3 to use as anstaz gives \begin{align*} \tag{1E} \xi &= x^{3} a_{7}+x^{2} y a_{8}+x \,y^{2} a_{9}+y^{3} a_{10}+x^{2} a_{4}+x y a_{5}+y^{2} a_{6}+x a_{2}+y a_{3}+a_{1} \\ \tag{2E} \eta &= x^{3} b_{7}+x^{2} y b_{8}+x \,y^{2} b_{9}+y^{3} b_{10}+x^{2} b_{4}+x y b_{5}+y^{2} b_{6}+x b_{2}+y b_{3}+b_{1} \\ \end{align*} Where the unknown coefficients are \[ \{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, b_{7}, b_{8}, b_{9}, b_{10}\} \] Substituting equations (1E,2E) and \(\omega \) into (A) gives \begin{equation} \tag{5E} 3 x^{2} b_{7}+2 x y b_{8}+y^{2} b_{9}+2 x b_{4}+y b_{5}+b_{2}+\frac {\left (a \,y^{2}+b \,x^{2}+c +\sqrt {a^{2} y^{4}-2 a \,x^{2} y^{2} b +b^{2} x^{4}+2 y^{2} a c +2 b c \,x^{2}+c^{2}}\right ) \left (-3 x^{2} a_{7}+x^{2} b_{8}-2 x y a_{8}+2 x y b_{9}-y^{2} a_{9}+3 y^{2} b_{10}-2 x a_{4}+x b_{5}-y a_{5}+2 y b_{6}-a_{2}+b_{3}\right )}{2 a x y}-\frac {\left (a \,y^{2}+b \,x^{2}+c +\sqrt {a^{2} y^{4}-2 a \,x^{2} y^{2} b +b^{2} x^{4}+2 y^{2} a c +2 b c \,x^{2}+c^{2}}\right )^{2} \left (x^{2} a_{8}+2 x y a_{9}+3 y^{2} a_{10}+x a_{5}+2 y a_{6}+a_{3}\right )}{4 a^{2} x^{2} y^{2}}-\left (-\frac {a \,y^{2}+b \,x^{2}+c +\sqrt {a^{2} y^{4}-2 a \,x^{2} y^{2} b +b^{2} x^{4}+2 y^{2} a c +2 b c \,x^{2}+c^{2}}}{2 a \,x^{2} y}+\frac {2 b x +\frac {-4 a b x \,y^{2}+4 b^{2} x^{3}+4 b c x}{2 \sqrt {a^{2} y^{4}-2 a \,x^{2} y^{2} b +b^{2} x^{4}+2 y^{2} a c +2 b c \,x^{2}+c^{2}}}}{2 a x y}\right ) \left (x^{3} a_{7}+x^{2} y a_{8}+x \,y^{2} a_{9}+y^{3} a_{10}+x^{2} a_{4}+x y a_{5}+y^{2} a_{6}+x a_{2}+y a_{3}+a_{1}\right )-\left (-\frac {a \,y^{2}+b \,x^{2}+c +\sqrt {a^{2} y^{4}-2 a \,x^{2} y^{2} b +b^{2} x^{4}+2 y^{2} a c +2 b c \,x^{2}+c^{2}}}{2 a x \,y^{2}}+\frac {2 a y +\frac {4 a^{2} y^{3}-4 a b \,x^{2} y +4 a c y}{2 \sqrt {a^{2} y^{4}-2 a \,x^{2} y^{2} b +b^{2} x^{4}+2 y^{2} a c +2 b c \,x^{2}+c^{2}}}}{2 a x y}\right ) \left (x^{3} b_{7}+x^{2} y b_{8}+x \,y^{2} b_{9}+y^{3} b_{10}+x^{2} b_{4}+x y b_{5}+y^{2} b_{6}+x b_{2}+y b_{3}+b_{1}\right ) = 0 \end{equation} Putting the above in normal form gives \[ \text {Expression too large to display} \] Setting the numerator to zero gives \begin{equation} \tag{6E} \text {Expression too large to display} \end{equation} Simplifying the above gives \begin{equation} \tag{6E} \text {Expression too large to display} \end{equation} Since the PDE has radicals, simplifying gives \[ \text {Expression too large to display} \] Looking at the above PDE shows the following are all the terms with \(\{x, y\}\) in them. \[ \left \{x, y, \sqrt {a^{2} y^{4}-2 a \,x^{2} y^{2} b +b^{2} x^{4}+2 y^{2} a c +2 b c \,x^{2}+c^{2}}\right \} \] The following substitution is now made to be able to collect on all terms with \(\{x, y\}\) in them \[ \left \{x = v_{1}, y = v_{2}, \sqrt {a^{2} y^{4}-2 a \,x^{2} y^{2} b +b^{2} x^{4}+2 y^{2} a c +2 b c \,x^{2}+c^{2}} = v_{3}\right \} \] The above PDE (6E) now becomes \begin{equation} \tag{7E} \text {Expression too large to display} \end{equation} Collecting the above on the terms \(v_i\) introduced, and these are \[ \{v_{1}, v_{2}, v_{3}\} \] Equation (7E) now becomes \begin{equation} \tag{8E} \text {Expression too large to display} \end{equation} Setting each coefficients in (8E) to zero gives the following equations to solve \begin {align*} -2 a^{2} a_{6}&=0\\ -4 a^{2} a_{10}&=0\\ -2 a^{3} a_{6}&=0\\ -4 a^{3} a_{10}&=0\\ -2 c^{2} a_{3}&=0\\ -2 c^{3} a_{3}&=0\\ -10 a c a_{10}&=0\\ -14 a^{2} c a_{10}&=0\\ -2 a^{2} a_{5}+2 a^{2} b_{6}&=0\\ -2 a^{3} a_{5}+2 a^{3} b_{6}&=0\\ -4 a^{2} a_{9}+4 a^{2} b_{10}&=0\\ -4 a^{3} a_{9}+4 a^{3} b_{10}&=0\\ -2 a^{3} a_{4}+4 a^{2} b a_{6}&=0\\ 2 a b b_{4}-2 b^{2} a_{5}&=0\\ 2 a \,b^{2} b_{4}-2 b^{3} a_{5}&=0\\ -2 a \,b^{2} a_{5}+6 a \,b^{2} b_{6}&=0\\ 2 a b b_{7}-2 b^{2} a_{8}&=0\\ 2 a \,b^{2} b_{7}-2 b^{3} a_{8}&=0\\ 2 a c a_{1}-4 c^{2} a_{6}&=0\\ 2 a^{2} a_{1}-6 a c a_{6}&=0\\ 2 a \,c^{2} a_{1}-4 c^{3} a_{6}&=0\\ 4 a^{2} c a_{1}-10 a \,c^{2} a_{6}&=0\\ 2 a^{3} a_{1}-8 a^{2} c a_{6}&=0\\ -2 a c a_{3}-6 c^{2} a_{10}&=0\\ -4 a \,c^{2} a_{3}-6 c^{3} a_{10}&=0\\ -2 a^{2} c a_{3}-16 a \,c^{2} a_{10}&=0\\ 2 a c b_{1}-2 c^{2} a_{5}&=0\\ 2 a \,c^{2} b_{1}-2 c^{3} a_{5}&=0\\ -6 a \,c^{2} a_{5}+6 a \,c^{2} b_{6}&=0\\ 4 a c b_{3}-4 c^{2} a_{9}&=0\\ 4 a \,c^{2} b_{3}-4 c^{3} a_{9}&=0\\ -8 a c a_{9}+8 a c b_{10}&=0\\ -12 a^{2} c a_{9}+12 a^{2} c b_{10}&=0\\ -8 a b c a_{5}+12 a b c b_{6}&=0\\ -6 a b a_{4}+4 a b b_{5}-4 b^{2} a_{6}&=0\\ -2 a^{2} a_{4}+4 a^{2} b_{5}-2 a b a_{6}&=0\\ -6 a \,b^{2} a_{4}+4 a \,b^{2} b_{5}-4 b^{3} a_{6}&=0\\ 8 a^{2} b a_{4}-4 a^{2} b b_{5}+2 a \,b^{2} a_{6}&=0\\ 6 a^{2} b_{4}-4 a b a_{5}+6 a b b_{6}&=0\\ -2 a^{3} b_{4}+6 a^{2} b a_{5}-8 a^{2} b b_{6}&=0\\ -8 a b a_{7}+4 a b b_{8}-4 b^{2} a_{9}&=0\\ -8 a \,b^{2} a_{7}+4 a \,b^{2} b_{8}-4 b^{3} a_{9}&=0\\ -4 a^{3} a_{7}+8 a^{2} b a_{9}-12 a^{2} b b_{10}&=0\\ 12 a^{2} b a_{7}-4 a^{2} b b_{8}+8 a \,b^{2} b_{10}&=0\\ -4 a^{2} a_{8}+6 b_{9} a^{2}-2 a b a_{10}&=0\\ -4 a \,b^{2} a_{8}+6 a \,b^{2} b_{9}-6 b^{3} a_{10}&=0\\ -4 a^{3} a_{8}+2 a^{3} b_{9}+6 a^{2} b a_{10}&=0\\ -2 a^{2} b_{1}-4 a c a_{5}+6 a c b_{6}&=0\\ -2 a^{3} b_{1}-6 a^{2} c a_{5}+8 a^{2} c b_{6}&=0\\ 4 a^{2} c b_{3}-12 a \,c^{2} a_{9}+8 a \,c^{2} b_{10}&=0\\ 2 a c b_{2}-4 b c a_{3}-2 c^{2} a_{8}&=0\\ 2 a \,c^{2} b_{2}-6 b \,c^{2} a_{3}-2 c^{3} a_{8}&=0\\ -2 a \,c^{2} a_{4}+4 a \,c^{2} b_{5}-12 b \,c^{2} a_{6}&=0\\ -4 a^{2} c a_{4}+4 a^{2} c b_{5}-8 a b c a_{6}&=0\\ 2 a b b_{1}+2 a c b_{4}-4 b c a_{5}&=0\\ 4 a b c b_{1}+2 a \,c^{2} b_{4}-6 b \,c^{2} a_{5}&=0\\ 2 a \,b^{2} b_{1}+4 a b c b_{4}-6 b^{2} c a_{5}&=0\\ -12 a b c a_{8}+12 a b c b_{9}-18 b^{2} c a_{10}&=0\\ -4 a^{2} a_{7}+8 b_{8} a^{2}-4 a b a_{9}+8 a b b_{10}&=0\\ 10 b_{7} a^{2}-6 a b a_{8}+6 a b b_{9}-6 b^{2} a_{10}&=0\\ -2 a^{3} b_{7}+10 a^{2} b a_{8}-8 a^{2} b b_{9}+4 a \,b^{2} a_{10}&=0\\ -2 a b a_{1}-2 a c a_{4}+4 a c b_{5}-8 b c a_{6}&=0\\ -2 a \,b^{2} a_{1}-8 a b c a_{4}+8 a b c b_{5}-12 b^{2} c a_{6}&=0\\ -4 a b c a_{3}-8 a \,c^{2} a_{8}+6 a \,c^{2} b_{9}-18 b \,c^{2} a_{10}&=0\\ 2 a b b_{2}+2 a c b_{7}-2 b^{2} a_{3}-4 b c a_{8}&=0\\ 4 a b c b_{2}+2 a \,c^{2} b_{7}-6 b^{2} c a_{3}-6 b \,c^{2} a_{8}&=0\\ 2 a \,b^{2} b_{2}+4 a b c b_{7}-2 b^{3} a_{3}-6 b^{2} c a_{8}&=0\\ -4 a b a_{2}+4 a b b_{3}-4 a c a_{7}+4 a c b_{8}-8 b c a_{9}&=0\\ -4 a b c a_{2}+8 a b c b_{3}-4 a \,c^{2} a_{7}+4 a \,c^{2} b_{8}-12 b \,c^{2} a_{9}&=0\\ -4 a \,b^{2} a_{2}+4 a \,b^{2} b_{3}-12 a b c a_{7}+8 a b c b_{8}-12 b^{2} c a_{9}&=0\\ 2 a^{2} b_{2}-2 a b a_{3}-6 a c a_{8}+6 a c b_{9}-12 b c a_{10}&=0\\ -2 a^{3} b_{2}+2 a^{2} b a_{3}-10 a^{2} c a_{8}+8 a^{2} c b_{9}-12 a b c a_{10}&=0\\ 4 a^{2} b a_{2}-4 a^{2} b b_{3}-8 a^{2} c a_{7}+4 a^{2} c b_{8}-12 a b c a_{9}+16 a b c b_{10}&=0 \end {align*}

Solving the above equations for the unknowns gives \begin {align*} a_{1}&=0\\ a_{2}&=-\frac {c b_{10}}{a}\\ a_{3}&=0\\ a_{4}&=0\\ a_{5}&=0\\ a_{6}&=0\\ a_{7}&=-\frac {b_{10} b}{a}\\ a_{8}&=0\\ a_{9}&=b_{10}\\ a_{10}&=0\\ b_{1}&=0\\ b_{2}&=0\\ b_{3}&=\frac {c b_{10}}{a}\\ b_{4}&=0\\ b_{5}&=0\\ b_{6}&=0\\ b_{7}&=0\\ b_{8}&=-\frac {b_{10} b}{a}\\ b_{9}&=0\\ b_{10}&=b_{10} \end {align*}

Substituting the above solution in the anstaz (1E,2E) (using \(1\) as arbitrary value for any unknown in the RHS) gives \begin{align*} \xi &= \frac {x \left (a \,y^{2}-b \,x^{2}-c \right )}{a} \\ \eta &= \frac {y \left (a \,y^{2}-b \,x^{2}+c \right )}{a} \\ \end{align*} The next step is to determine the canonical coordinates \(R,S\). The canonical coordinates map \(\left ( x,y\right ) \to \left ( R,S \right )\) where \(\left ( R,S \right )\) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is \begin {align*} \frac {d x}{\xi } &= \frac {d y}{\eta } = dS \tag {1} \end {align*}

The above comes from the requirements that \(\left ( \xi \frac {\partial }{\partial x} + \eta \frac {\partial }{\partial y}\right ) S(x,y) = 1\). Starting with the first pair of ode’s in (1) gives an ode to solve for the independent variable \(R\) in the canonical coordinates, where \(S(R)\). Therefore \begin {align*} \frac {dy}{dx} &= \frac {\eta }{\xi }\\ &= \frac {\frac {y \left (a \,y^{2}-b \,x^{2}+c \right )}{a}}{\frac {x \left (a \,y^{2}-b \,x^{2}-c \right )}{a}}\\ &= \frac {y \left (a \,y^{2}-b \,x^{2}+c \right )}{x \left (a \,y^{2}-b \,x^{2}-c \right )} \end {align*}

This is easily solved to give \begin {align*} \frac {1}{\frac {1}{y^{2}}-\frac {a}{b \,x^{2}+c}} = -\frac {x \sqrt {b \,x^{2}+c}}{\sqrt {c_{1} -\frac {4 a^{2} c}{b \left (b \,x^{2}+c \right )}}}-\frac {b \,x^{2}+c}{2 a} \end {align*}

Where now the coordinate \(R\) is taken as the constant of integration. Hence \begin {align*} R &= \frac {4 \left (a^{2} y^{4}-2 a \,x^{2} y^{2} b +b^{2} x^{4}+2 y^{2} a c +2 b c \,x^{2}+c^{2}\right ) a^{2}}{\left (a^{2} y^{4}+2 a \,x^{2} y^{2} b +b^{2} x^{4}+2 y^{2} a c +2 b c \,x^{2}+c^{2}\right ) b} \end {align*}

Since \(\xi \) depends on \(y\) and \(\eta \) depends on \(x\) then we can use either one to find \(S\). Let us use \begin {align*} dS &= \frac {dx}{\xi } \\ &= \frac {dx}{\frac {x \left (a \,y^{2}-b \,x^{2}-c \right )}{a}} \end {align*}

But we have now to replace \(y\) in \(\xi \) from its value from the solution of \(\frac {dy}{dx}=\frac {\eta }{\xi }\) found above. This results in \begin {align*} \xi &= \frac {x \left (a {\left (-\frac {x \sqrt {b \,x^{2}+c}}{\sqrt {c_{1} -\frac {4 a^{2} c}{b \left (b \,x^{2}+c \right )}}}-\frac {b \,x^{2}+c}{2 a}\right )}^{2}-b \,x^{2}-c \right )}{a} \end {align*}

Integrating gives \begin {align*} S &= \frac {dx}{\frac {x \left (a {\left (-\frac {x \sqrt {b \,x^{2}+c}}{\sqrt {c_{1} -\frac {4 a^{2} c}{b \left (b \,x^{2}+c \right )}}}-\frac {b \,x^{2}+c}{2 a}\right )}^{2}-b \,x^{2}-c \right )}{a}}\\ &= \text {Expression too large to display} \end {align*}

Where the constant of integration is set to zero as we just need one solution. Replacing back \(c_{1} = \frac {4 \left (a^{2} y^{4}-2 a \,x^{2} y^{2} b +b^{2} x^{4}+2 y^{2} a c +2 b c \,x^{2}+c^{2}\right ) a^{2}}{\left (a^{2} y^{4}+2 a \,x^{2} y^{2} b +b^{2} x^{4}+2 y^{2} a c +2 b c \,x^{2}+c^{2}\right ) b}\) then the above becomes \begin {align*} S &= \text {Expression too large to display} \end {align*}

Unable to determine ODE type.

Solving equation (2)

Writing the ode as \begin {align*} y^{\prime }&=\frac {a \,y^{2}+b \,x^{2}+c -\sqrt {a^{2} y^{4}-2 a \,x^{2} y^{2} b +b^{2} x^{4}+2 y^{2} a c +2 b c \,x^{2}+c^{2}}}{2 a x y}\\ y^{\prime }&= \omega \left ( x,y\right ) \end {align*}

The condition of Lie symmetry is the linearized PDE given by \begin {align*} \eta _{x}+\omega \left ( \eta _{y}-\xi _{x}\right ) -\omega ^{2}\xi _{y}-\omega _{x}\xi -\omega _{y}\eta =0\tag {A} \end {align*}

The type of this ode is not in the lookup table. To determine \(\xi ,\eta \) then (A) is solved using ansatz. Making bivariate polynomials of degree 3 to use as anstaz gives \begin{align*} \tag{1E} \xi &= x^{3} a_{7}+x^{2} y a_{8}+x \,y^{2} a_{9}+y^{3} a_{10}+x^{2} a_{4}+x y a_{5}+y^{2} a_{6}+x a_{2}+y a_{3}+a_{1} \\ \tag{2E} \eta &= x^{3} b_{7}+x^{2} y b_{8}+x \,y^{2} b_{9}+y^{3} b_{10}+x^{2} b_{4}+x y b_{5}+y^{2} b_{6}+x b_{2}+y b_{3}+b_{1} \\ \end{align*} Where the unknown coefficients are \[ \{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, b_{7}, b_{8}, b_{9}, b_{10}\} \] Substituting equations (1E,2E) and \(\omega \) into (A) gives \begin{equation} \tag{5E} 3 x^{2} b_{7}+2 x y b_{8}+y^{2} b_{9}+2 x b_{4}+y b_{5}+b_{2}+\frac {\left (a \,y^{2}+b \,x^{2}+c -\sqrt {a^{2} y^{4}-2 a \,x^{2} y^{2} b +b^{2} x^{4}+2 y^{2} a c +2 b c \,x^{2}+c^{2}}\right ) \left (-3 x^{2} a_{7}+x^{2} b_{8}-2 x y a_{8}+2 x y b_{9}-y^{2} a_{9}+3 y^{2} b_{10}-2 x a_{4}+x b_{5}-y a_{5}+2 y b_{6}-a_{2}+b_{3}\right )}{2 a x y}-\frac {\left (a \,y^{2}+b \,x^{2}+c -\sqrt {a^{2} y^{4}-2 a \,x^{2} y^{2} b +b^{2} x^{4}+2 y^{2} a c +2 b c \,x^{2}+c^{2}}\right )^{2} \left (x^{2} a_{8}+2 x y a_{9}+3 y^{2} a_{10}+x a_{5}+2 y a_{6}+a_{3}\right )}{4 a^{2} x^{2} y^{2}}-\left (-\frac {a \,y^{2}+b \,x^{2}+c -\sqrt {a^{2} y^{4}-2 a \,x^{2} y^{2} b +b^{2} x^{4}+2 y^{2} a c +2 b c \,x^{2}+c^{2}}}{2 a \,x^{2} y}+\frac {2 b x -\frac {-4 a b x \,y^{2}+4 b^{2} x^{3}+4 b c x}{2 \sqrt {a^{2} y^{4}-2 a \,x^{2} y^{2} b +b^{2} x^{4}+2 y^{2} a c +2 b c \,x^{2}+c^{2}}}}{2 a x y}\right ) \left (x^{3} a_{7}+x^{2} y a_{8}+x \,y^{2} a_{9}+y^{3} a_{10}+x^{2} a_{4}+x y a_{5}+y^{2} a_{6}+x a_{2}+y a_{3}+a_{1}\right )-\left (-\frac {a \,y^{2}+b \,x^{2}+c -\sqrt {a^{2} y^{4}-2 a \,x^{2} y^{2} b +b^{2} x^{4}+2 y^{2} a c +2 b c \,x^{2}+c^{2}}}{2 a x \,y^{2}}+\frac {2 a y -\frac {4 a^{2} y^{3}-4 a b \,x^{2} y +4 a c y}{2 \sqrt {a^{2} y^{4}-2 a \,x^{2} y^{2} b +b^{2} x^{4}+2 y^{2} a c +2 b c \,x^{2}+c^{2}}}}{2 a x y}\right ) \left (x^{3} b_{7}+x^{2} y b_{8}+x \,y^{2} b_{9}+y^{3} b_{10}+x^{2} b_{4}+x y b_{5}+y^{2} b_{6}+x b_{2}+y b_{3}+b_{1}\right ) = 0 \end{equation} Putting the above in normal form gives \[ \text {Expression too large to display} \] Setting the numerator to zero gives \begin{equation} \tag{6E} \text {Expression too large to display} \end{equation} Simplifying the above gives \begin{equation} \tag{6E} \text {Expression too large to display} \end{equation} Since the PDE has radicals, simplifying gives \[ \text {Expression too large to display} \] Looking at the above PDE shows the following are all the terms with \(\{x, y\}\) in them. \[ \left \{x, y, \sqrt {a^{2} y^{4}-2 a \,x^{2} y^{2} b +b^{2} x^{4}+2 y^{2} a c +2 b c \,x^{2}+c^{2}}\right \} \] The following substitution is now made to be able to collect on all terms with \(\{x, y\}\) in them \[ \left \{x = v_{1}, y = v_{2}, \sqrt {a^{2} y^{4}-2 a \,x^{2} y^{2} b +b^{2} x^{4}+2 y^{2} a c +2 b c \,x^{2}+c^{2}} = v_{3}\right \} \] The above PDE (6E) now becomes \begin{equation} \tag{7E} \text {Expression too large to display} \end{equation} Collecting the above on the terms \(v_i\) introduced, and these are \[ \{v_{1}, v_{2}, v_{3}\} \] Equation (7E) now becomes \begin{equation} \tag{8E} \text {Expression too large to display} \end{equation} Setting each coefficients in (8E) to zero gives the following equations to solve \begin {align*} -2 a^{2} a_{6}&=0\\ -4 a^{2} a_{10}&=0\\ 2 a^{3} a_{6}&=0\\ 4 a^{3} a_{10}&=0\\ -2 c^{2} a_{3}&=0\\ 2 c^{3} a_{3}&=0\\ -10 a c a_{10}&=0\\ 14 a^{2} c a_{10}&=0\\ -2 a^{2} a_{5}+2 a^{2} b_{6}&=0\\ 2 a^{3} a_{5}-2 a^{3} b_{6}&=0\\ -4 a^{2} a_{9}+4 a^{2} b_{10}&=0\\ 4 a^{3} a_{9}-4 a^{3} b_{10}&=0\\ 2 a^{3} a_{4}-4 a^{2} b a_{6}&=0\\ 2 a b b_{4}-2 b^{2} a_{5}&=0\\ -2 a \,b^{2} b_{4}+2 b^{3} a_{5}&=0\\ 2 a \,b^{2} a_{5}-6 a \,b^{2} b_{6}&=0\\ 2 a b b_{7}-2 b^{2} a_{8}&=0\\ -2 a \,b^{2} b_{7}+2 b^{3} a_{8}&=0\\ 2 a c a_{1}-4 c^{2} a_{6}&=0\\ 2 a^{2} a_{1}-6 a c a_{6}&=0\\ -2 a \,c^{2} a_{1}+4 c^{3} a_{6}&=0\\ -4 a^{2} c a_{1}+10 a \,c^{2} a_{6}&=0\\ -2 a^{3} a_{1}+8 a^{2} c a_{6}&=0\\ -2 a c a_{3}-6 c^{2} a_{10}&=0\\ 4 a \,c^{2} a_{3}+6 c^{3} a_{10}&=0\\ 2 a^{2} c a_{3}+16 a \,c^{2} a_{10}&=0\\ 2 a c b_{1}-2 c^{2} a_{5}&=0\\ -2 a \,c^{2} b_{1}+2 c^{3} a_{5}&=0\\ 6 a \,c^{2} a_{5}-6 a \,c^{2} b_{6}&=0\\ 4 a c b_{3}-4 c^{2} a_{9}&=0\\ -4 a \,c^{2} b_{3}+4 c^{3} a_{9}&=0\\ -8 a c a_{9}+8 a c b_{10}&=0\\ 12 a^{2} c a_{9}-12 a^{2} c b_{10}&=0\\ 8 a b c a_{5}-12 a b c b_{6}&=0\\ -6 a b a_{4}+4 a b b_{5}-4 b^{2} a_{6}&=0\\ -2 a^{2} a_{4}+4 a^{2} b_{5}-2 a b a_{6}&=0\\ 6 a \,b^{2} a_{4}-4 a \,b^{2} b_{5}+4 b^{3} a_{6}&=0\\ -8 a^{2} b a_{4}+4 a^{2} b b_{5}-2 a \,b^{2} a_{6}&=0\\ 6 a^{2} b_{4}-4 a b a_{5}+6 a b b_{6}&=0\\ 2 a^{3} b_{4}-6 a^{2} b a_{5}+8 a^{2} b b_{6}&=0\\ -8 a b a_{7}+4 a b b_{8}-4 b^{2} a_{9}&=0\\ 8 a \,b^{2} a_{7}-4 a \,b^{2} b_{8}+4 b^{3} a_{9}&=0\\ 4 a^{3} a_{7}-8 a^{2} b a_{9}+12 a^{2} b b_{10}&=0\\ -12 a^{2} b a_{7}+4 a^{2} b b_{8}-8 a \,b^{2} b_{10}&=0\\ -4 a^{2} a_{8}+6 b_{9} a^{2}-2 a b a_{10}&=0\\ 4 a \,b^{2} a_{8}-6 a \,b^{2} b_{9}+6 b^{3} a_{10}&=0\\ 4 a^{3} a_{8}-2 a^{3} b_{9}-6 a^{2} b a_{10}&=0\\ -2 a^{2} b_{1}-4 a c a_{5}+6 a c b_{6}&=0\\ 2 a^{3} b_{1}+6 a^{2} c a_{5}-8 a^{2} c b_{6}&=0\\ -4 a^{2} c b_{3}+12 a \,c^{2} a_{9}-8 a \,c^{2} b_{10}&=0\\ 2 a c b_{2}-4 b c a_{3}-2 c^{2} a_{8}&=0\\ -2 a \,c^{2} b_{2}+6 b \,c^{2} a_{3}+2 c^{3} a_{8}&=0\\ 2 a \,c^{2} a_{4}-4 a \,c^{2} b_{5}+12 b \,c^{2} a_{6}&=0\\ 4 a^{2} c a_{4}-4 a^{2} c b_{5}+8 a b c a_{6}&=0\\ 2 a b b_{1}+2 a c b_{4}-4 b c a_{5}&=0\\ -4 a b c b_{1}-2 a \,c^{2} b_{4}+6 b \,c^{2} a_{5}&=0\\ -2 a \,b^{2} b_{1}-4 a b c b_{4}+6 b^{2} c a_{5}&=0\\ 12 a b c a_{8}-12 a b c b_{9}+18 b^{2} c a_{10}&=0\\ -4 a^{2} a_{7}+8 b_{8} a^{2}-4 a b a_{9}+8 a b b_{10}&=0\\ 10 b_{7} a^{2}-6 a b a_{8}+6 a b b_{9}-6 b^{2} a_{10}&=0\\ 2 a^{3} b_{7}-10 a^{2} b a_{8}+8 a^{2} b b_{9}-4 a \,b^{2} a_{10}&=0\\ -2 a b a_{1}-2 a c a_{4}+4 a c b_{5}-8 b c a_{6}&=0\\ 2 a \,b^{2} a_{1}+8 a b c a_{4}-8 a b c b_{5}+12 b^{2} c a_{6}&=0\\ 4 a b c a_{3}+8 a \,c^{2} a_{8}-6 a \,c^{2} b_{9}+18 b \,c^{2} a_{10}&=0\\ 2 a b b_{2}+2 a c b_{7}-2 b^{2} a_{3}-4 b c a_{8}&=0\\ -4 a b c b_{2}-2 a \,c^{2} b_{7}+6 b^{2} c a_{3}+6 b \,c^{2} a_{8}&=0\\ -2 a \,b^{2} b_{2}-4 a b c b_{7}+2 b^{3} a_{3}+6 b^{2} c a_{8}&=0\\ -4 a b a_{2}+4 a b b_{3}-4 a c a_{7}+4 a c b_{8}-8 b c a_{9}&=0\\ 4 a b c a_{2}-8 a b c b_{3}+4 a \,c^{2} a_{7}-4 a \,c^{2} b_{8}+12 b \,c^{2} a_{9}&=0\\ 4 a \,b^{2} a_{2}-4 a \,b^{2} b_{3}+12 a b c a_{7}-8 a b c b_{8}+12 b^{2} c a_{9}&=0\\ 2 a^{2} b_{2}-2 a b a_{3}-6 a c a_{8}+6 a c b_{9}-12 b c a_{10}&=0\\ 2 a^{3} b_{2}-2 a^{2} b a_{3}+10 a^{2} c a_{8}-8 a^{2} c b_{9}+12 a b c a_{10}&=0\\ -4 a^{2} b a_{2}+4 a^{2} b b_{3}+8 a^{2} c a_{7}-4 a^{2} c b_{8}+12 a b c a_{9}-16 a b c b_{10}&=0 \end {align*}

Solving the above equations for the unknowns gives \begin {align*} a_{1}&=0\\ a_{2}&=-b_{3}\\ a_{3}&=0\\ a_{4}&=0\\ a_{5}&=0\\ a_{6}&=0\\ a_{7}&=-\frac {b_{3} b}{c}\\ a_{8}&=0\\ a_{9}&=\frac {a b_{3}}{c}\\ a_{10}&=0\\ b_{1}&=0\\ b_{2}&=0\\ b_{3}&=b_{3}\\ b_{4}&=0\\ b_{5}&=0\\ b_{6}&=0\\ b_{7}&=0\\ b_{8}&=-\frac {b_{3} b}{c}\\ b_{9}&=0\\ b_{10}&=\frac {a b_{3}}{c} \end {align*}

Substituting the above solution in the anstaz (1E,2E) (using \(1\) as arbitrary value for any unknown in the RHS) gives \begin{align*} \xi &= \frac {x \left (a \,y^{2}-b \,x^{2}-c \right )}{c} \\ \eta &= \frac {y \left (a \,y^{2}-b \,x^{2}+c \right )}{c} \\ \end{align*} Shifting is now applied to make \(\xi =0\) in order to simplify the rest of the computation \begin {align*} \eta &= \eta - \omega \left (x,y\right ) \xi \\ &= \frac {y \left (a \,y^{2}-b \,x^{2}+c \right )}{c} - \left (\frac {a \,y^{2}+b \,x^{2}+c -\sqrt {a^{2} y^{4}-2 a \,x^{2} y^{2} b +b^{2} x^{4}+2 y^{2} a c +2 b c \,x^{2}+c^{2}}}{2 a x y}\right ) \left (\frac {x \left (a \,y^{2}-b \,x^{2}-c \right )}{c}\right ) \\ &= \frac {a^{2} y^{4}-2 a \,x^{2} y^{2} b +b^{2} x^{4}+\sqrt {a^{2} y^{4}-2 a \,x^{2} y^{2} b +b^{2} x^{4}+2 y^{2} a c +2 b c \,x^{2}+c^{2}}\, a \,y^{2}-\sqrt {a^{2} y^{4}-2 a \,x^{2} y^{2} b +b^{2} x^{4}+2 y^{2} a c +2 b c \,x^{2}+c^{2}}\, b \,x^{2}+2 y^{2} a c +2 b c \,x^{2}-\sqrt {a^{2} y^{4}-2 a \,x^{2} y^{2} b +b^{2} x^{4}+2 y^{2} a c +2 b c \,x^{2}+c^{2}}\, c +c^{2}}{2 a c y}\\ \xi &= 0 \end {align*}

The next step is to determine the canonical coordinates \(R,S\). The canonical coordinates map \(\left ( x,y\right ) \to \left ( R,S \right )\) where \(\left ( R,S \right )\) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is \begin {align*} \frac {d x}{\xi } &= \frac {d y}{\eta } = dS \tag {1} \end {align*}

The above comes from the requirements that \(\left ( \xi \frac {\partial }{\partial x} + \eta \frac {\partial }{\partial y}\right ) S(x,y) = 1\). Starting with the first pair of ode’s in (1) gives an ode to solve for the independent variable \(R\) in the canonical coordinates, where \(S(R)\). Since \(\xi =0\) then in this special case \begin {align*} R = x \end {align*}

\(S\) is found from \begin {align*} S &= \int { \frac {1}{\eta }} dy\\ &= \int { \frac {1}{\frac {a^{2} y^{4}-2 a \,x^{2} y^{2} b +b^{2} x^{4}+\sqrt {a^{2} y^{4}-2 a \,x^{2} y^{2} b +b^{2} x^{4}+2 y^{2} a c +2 b c \,x^{2}+c^{2}}\, a \,y^{2}-\sqrt {a^{2} y^{4}-2 a \,x^{2} y^{2} b +b^{2} x^{4}+2 y^{2} a c +2 b c \,x^{2}+c^{2}}\, b \,x^{2}+2 y^{2} a c +2 b c \,x^{2}-\sqrt {a^{2} y^{4}-2 a \,x^{2} y^{2} b +b^{2} x^{4}+2 y^{2} a c +2 b c \,x^{2}+c^{2}}\, c +c^{2}}{2 a c y}}} dy \end {align*}

Which results in \begin {align*} S&= \frac {c \arctan \left (\frac {2 y^{2} a^{2}-2 a b \,x^{2}+2 a c}{4 a x \sqrt {b c}}\right )}{8 x \sqrt {b c}}-\frac {c \ln \left (\frac {2 b^{2} x^{4}+4 b c \,x^{2}+2 c^{2}+\left (-2 a b \,x^{2}+2 a c \right ) y^{2}+2 \sqrt {\left (b \,x^{2}+c \right )^{2}}\, \sqrt {a^{2} y^{4}+\left (-2 a b \,x^{2}+2 a c \right ) y^{2}+b^{2} x^{4}+2 b c \,x^{2}+c^{2}}}{y^{2}}\right )}{4 \sqrt {\left (b \,x^{2}+c \right )^{2}}}-\frac {a \ln \left (\frac {y^{2} a^{2}-a b \,x^{2}+a c}{\sqrt {a^{2}}}+\sqrt {a^{2} y^{4}+\left (-2 a b \,x^{2}+2 a c \right ) y^{2}+b^{2} x^{4}+2 b c \,x^{2}+c^{2}}\right )}{4 \sqrt {a^{2}}}+\frac {c^{2} \ln \left (y \right )}{2 b^{2} x^{4}+4 b c \,x^{2}+2 c^{2}}-\frac {c^{2} \ln \left (a^{2} y^{4}-2 a \,x^{2} y^{2} b +b^{2} x^{4}+2 y^{2} a c +2 b c \,x^{2}+c^{2}\right )}{8 \left (b \,x^{2}+c \right )^{2}}-\frac {c^{2} x \arctan \left (\frac {2 y^{2} a^{2}-2 a b \,x^{2}+2 a c}{4 a x \sqrt {b c}}\right ) b}{8 \left (b \,x^{2}+c \right )^{2} \sqrt {b c}}-\frac {c^{3} \arctan \left (\frac {2 y^{2} a^{2}-2 a b \,x^{2}+2 a c}{4 a x \sqrt {b c}}\right )}{8 \left (b \,x^{2}+c \right )^{2} x \sqrt {b c}}+\frac {\ln \left (a^{2} y^{4}-2 a \,x^{2} y^{2} b +b^{2} x^{4}+2 y^{2} a c +2 b c \,x^{2}+c^{2}\right )}{8}-\frac {x \arctan \left (\frac {2 y^{2} a^{2}-2 a b \,x^{2}+2 a c}{4 a x \sqrt {b c}}\right ) b}{8 \sqrt {b c}}+\frac {c b \,x^{2} \ln \left (y \right )}{b^{2} x^{4}+2 b c \,x^{2}+c^{2}}-\frac {c b \,x^{2} \ln \left (a^{2} y^{4}-2 a \,x^{2} y^{2} b +b^{2} x^{4}+2 y^{2} a c +2 b c \,x^{2}+c^{2}\right )}{4 \left (b \,x^{2}+c \right )^{2}}+\frac {c \,b^{2} x^{3} \arctan \left (\frac {2 y^{2} a^{2}-2 a b \,x^{2}+2 a c}{4 a x \sqrt {b c}}\right )}{8 \left (b \,x^{2}+c \right )^{2} \sqrt {b c}}+\frac {b^{2} x^{4} \ln \left (y \right )}{2 b^{2} x^{4}+4 b c \,x^{2}+2 c^{2}}-\frac {b^{2} x^{4} \ln \left (a^{2} y^{4}-2 a \,x^{2} y^{2} b +b^{2} x^{4}+2 y^{2} a c +2 b c \,x^{2}+c^{2}\right )}{8 \left (b \,x^{2}+c \right )^{2}}+\frac {b^{3} x^{5} \arctan \left (\frac {2 y^{2} a^{2}-2 a b \,x^{2}+2 a c}{4 a x \sqrt {b c}}\right )}{8 \left (b \,x^{2}+c \right )^{2} \sqrt {b c}}-\frac {b \,x^{2} \ln \left (\frac {2 b^{2} x^{4}+4 b c \,x^{2}+2 c^{2}+\left (-2 a b \,x^{2}+2 a c \right ) y^{2}+2 \sqrt {\left (b \,x^{2}+c \right )^{2}}\, \sqrt {a^{2} y^{4}+\left (-2 a b \,x^{2}+2 a c \right ) y^{2}+b^{2} x^{4}+2 b c \,x^{2}+c^{2}}}{y^{2}}\right )}{4 \sqrt {\left (b \,x^{2}+c \right )^{2}}} \end {align*}

Now that \(R,S\) are found, we need to setup the ode in these coordinates. This is done by evaluating \begin {align*} \frac {dS}{dR} &= \frac { S_{x} + \omega (x,y) S_{y} }{ R_{x} + \omega (x,y) R_{y} }\tag {2} \end {align*}

Where in the above \(R_{x},R_{y},S_{x},S_{y}\) are all partial derivatives and \(\omega (x,y)\) is the right hand side of the original ode given by \begin {align*} \omega (x,y) &= \frac {a \,y^{2}+b \,x^{2}+c -\sqrt {a^{2} y^{4}-2 a \,x^{2} y^{2} b +b^{2} x^{4}+2 y^{2} a c +2 b c \,x^{2}+c^{2}}}{2 a x y} \end {align*}

Evaluating all the partial derivatives gives \begin {align*} R_{x} &= 1\\ R_{y} &= 0\\ S_{x} &= -\frac {2 b c x}{\sqrt {a^{2} y^{4}-2 y^{2} \left (b \,x^{2}-c \right ) a +\left (b \,x^{2}+c \right )^{2}}\, \left (a \,y^{2}-b \,x^{2}+\sqrt {a^{2} y^{4}-2 y^{2} \left (b \,x^{2}-c \right ) a +\left (b \,x^{2}+c \right )^{2}}+c \right )}\\ S_{y} &= -\frac {\left (b^{2} x^{4}-b \left (a \,y^{2}-2 c \right ) x^{2}+c^{2}\right ) \sqrt {a^{2} y^{4}-2 y^{2} \left (b \,x^{2}-c \right ) a +\left (b \,x^{2}+c \right )^{2}}+b^{3} x^{6}-2 \left (a \,y^{2}-\frac {3 c}{2}\right ) x^{4} b^{2}+x^{2} \left (a^{2} y^{4}-y^{2} a c +3 c^{2}\right ) b +c^{2} \left (a \,y^{2}+c \right )}{\sqrt {a^{2} y^{4}-2 y^{2} \left (b \,x^{2}-c \right ) a +\left (b \,x^{2}+c \right )^{2}}\, y \left (\left (-b \,x^{2}-c \right ) \sqrt {a^{2} y^{4}-2 y^{2} \left (b \,x^{2}-c \right ) a +\left (b \,x^{2}+c \right )^{2}}-b^{2} x^{4}+b \left (a \,y^{2}-2 c \right ) x^{2}-y^{2} a c -c^{2}\right )} \end {align*}

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates. \begin {align*} \frac {dS}{dR} &= 0\tag {2A} \end {align*}

We now need to express the RHS as function of \(R\) only. This is done by solving for \(x,y\) in terms of \(R,S\) from the result obtained earlier and simplifying. This gives \begin {align*} \frac {dS}{dR} &= 0 \end {align*}

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates \(R,S\). Integrating the above gives \begin {align*} S \left (R \right ) = c_{1}\tag {4} \end {align*}

To complete the solution, we just need to transform (4) back to \(x,y\) coordinates. This results in \begin {align*} -\frac {\ln \left (2\right )}{4}-\frac {\ln \left (\left (b \,x^{2}+c \right ) \sqrt {y^{4} a^{2}-2 y^{2} \left (b \,x^{2}-c \right ) a +\left (b \,x^{2}+c \right )^{2}}+b^{2} x^{4}-b \left (y^{2} a -2 c \right ) x^{2}+c \left (y^{2} a +c \right )\right )}{4}+\ln \left (y\right )-\frac {\ln \left (y^{2} a -b \,x^{2}+\sqrt {y^{4} a^{2}-2 y^{2} \left (b \,x^{2}-c \right ) a +\left (b \,x^{2}+c \right )^{2}}+c \right )}{4} = c_{1} \end {align*}

Which simplifies to \begin {align*} -\frac {\ln \left (2\right )}{4}-\frac {\ln \left (\left (b \,x^{2}+c \right ) \sqrt {y^{4} a^{2}-2 y^{2} \left (b \,x^{2}-c \right ) a +\left (b \,x^{2}+c \right )^{2}}+b^{2} x^{4}-b \left (y^{2} a -2 c \right ) x^{2}+c \left (y^{2} a +c \right )\right )}{4}+\ln \left (y\right )-\frac {\ln \left (y^{2} a -b \,x^{2}+\sqrt {y^{4} a^{2}-2 y^{2} \left (b \,x^{2}-c \right ) a +\left (b \,x^{2}+c \right )^{2}}+c \right )}{4} = c_{1} \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} -\frac {\ln \left (2\right )}{4}-\frac {\ln \left (\left (b \,x^{2}+c \right ) \sqrt {y^{4} a^{2}-2 y^{2} \left (b \,x^{2}-c \right ) a +\left (b \,x^{2}+c \right )^{2}}+b^{2} x^{4}-b \left (y^{2} a -2 c \right ) x^{2}+c \left (y^{2} a +c \right )\right )}{4}+\ln \left (y\right )-\frac {\ln \left (y^{2} a -b \,x^{2}+\sqrt {y^{4} a^{2}-2 y^{2} \left (b \,x^{2}-c \right ) a +\left (b \,x^{2}+c \right )^{2}}+c \right )}{4} &= c_{1} \\ \end{align*}

Verification of solutions

\[ -\frac {\ln \left (2\right )}{4}-\frac {\ln \left (\left (b \,x^{2}+c \right ) \sqrt {y^{4} a^{2}-2 y^{2} \left (b \,x^{2}-c \right ) a +\left (b \,x^{2}+c \right )^{2}}+b^{2} x^{4}-b \left (y^{2} a -2 c \right ) x^{2}+c \left (y^{2} a +c \right )\right )}{4}+\ln \left (y\right )-\frac {\ln \left (y^{2} a -b \,x^{2}+\sqrt {y^{4} a^{2}-2 y^{2} \left (b \,x^{2}-c \right ) a +\left (b \,x^{2}+c \right )^{2}}+c \right )}{4} = c_{1} \] Verified OK.

1.482.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & a x y {y^{\prime }}^{2}-\left (y^{2} a +b \,x^{2}+c \right ) y^{\prime }+b x y=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \left [y^{\prime }=\frac {y^{2} a +b \,x^{2}+c -\sqrt {y^{4} a^{2}-2 a \,x^{2} y^{2} b +b^{2} x^{4}+2 y^{2} a c +2 b c \,x^{2}+c^{2}}}{2 a x y}, y^{\prime }=\frac {y^{2} a +b \,x^{2}+c +\sqrt {y^{4} a^{2}-2 a \,x^{2} y^{2} b +b^{2} x^{4}+2 y^{2} a c +2 b c \,x^{2}+c^{2}}}{2 a x y}\right ] \\ \bullet & {} & \textrm {Solve the equation}\hspace {3pt} y^{\prime }=\frac {y^{2} a +b \,x^{2}+c -\sqrt {y^{4} a^{2}-2 a \,x^{2} y^{2} b +b^{2} x^{4}+2 y^{2} a c +2 b c \,x^{2}+c^{2}}}{2 a x y} \\ \bullet & {} & \textrm {Solve the equation}\hspace {3pt} y^{\prime }=\frac {y^{2} a +b \,x^{2}+c +\sqrt {y^{4} a^{2}-2 a \,x^{2} y^{2} b +b^{2} x^{4}+2 y^{2} a c +2 b c \,x^{2}+c^{2}}}{2 a x y} \\ \bullet & {} & \textrm {Set of solutions}\hspace {3pt} \\ {} & {} & \left \{\mathit {workingODE} , \mathit {workingODE}\right \} \end {array} \]

Solution by Maple

dsolve(a*x*y(x)*diff(y(x),x)^2-(a*y(x)^2+b*x^2+c)*diff(y(x),x)+b*x*y(x) = 0,y(x), singsol=all)
 

\[ \text {No solution found} \]

Solution by Mathematica

Time used: 3.583 (sec). Leaf size: 155

DSolve[b*x*y[x] - (c + b*x^2 + a*y[x]^2)*y'[x] + a*x*y[x]*y'[x]^2==0,y[x],x,IncludeSingularSolutions -> True]
 

\begin{align*} y(x)\to \sqrt {c_1 \left (x^2+\frac {c}{b-a c_1}\right )} \\ y(x)\to -\sqrt {-\frac {\left (\sqrt {c}+i \sqrt {b} x\right )^2}{a}} \\ y(x)\to \sqrt {-\frac {\left (\sqrt {c}+i \sqrt {b} x\right )^2}{a}} \\ y(x)\to -\sqrt {-\frac {\left (\sqrt {c}-i \sqrt {b} x\right )^2}{a}} \\ y(x)\to \sqrt {-\frac {\left (\sqrt {c}-i \sqrt {b} x\right )^2}{a}} \\ \end{align*}