2.19 problem 595

2.19.1 Maple step by step solution

Internal problem ID [8929]
Internal file name [OUTPUT/7864_Monday_June_06_2022_12_48_27_AM_98183432/index.tex]

Book: Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section: Chapter 1, Additional non-linear first order
Problem number: 595.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type

[[_1st_order, `_with_symmetry_[F(x),G(y)]`]]

Unable to solve or complete the solution.

\[ \boxed {y^{\prime }-\frac {F \left (\frac {y^{2} x +1}{x}\right )}{y x^{2}}=0} \] Unable to determine ODE type.

2.19.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & y^{\prime } y x^{2}-F \left (\frac {y^{2} x +1}{x}\right )=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & y^{\prime }=\frac {F \left (\frac {y^{2} x +1}{x}\right )}{y x^{2}} \end {array} \]

Maple trace

`Methods for first order ODEs: 
--- Trying classification methods --- 
trying homogeneous types: 
differential order: 1; looking for linear symmetries 
trying exact 
Looking for potential symmetries 
trying an equivalence to an Abel ODE 
trying 1st order ODE linearizable_by_differentiation 
--- Trying Lie symmetry methods, 1st order --- 
`, `-> Computing symmetries using: way = 3 
`, `-> Computing symmetries using: way = 4`[2*x^2, 1/y]
 

Solution by Maple

Time used: 0.172 (sec). Leaf size: 92

dsolve(diff(y(x),x) = F((x*y(x)^2+1)/x)/y(x)/x^2,y(x), singsol=all)
 

\begin{align*} y \left (x \right ) &= \operatorname {RootOf}\left (2 F \left (\frac {x \,\textit {\_Z}^{2}+1}{x}\right )-1\right ) \\ y \left (x \right ) &= \frac {\sqrt {x \left (\operatorname {RootOf}\left (\left (\int _{}^{\textit {\_Z}}\frac {1}{-1+2 F \left (\textit {\_a} \right )}d \textit {\_a} \right ) x +c_{1} x +1\right ) x -1\right )}}{x} \\ y \left (x \right ) &= -\frac {\sqrt {x \left (\operatorname {RootOf}\left (\left (\int _{}^{\textit {\_Z}}\frac {1}{-1+2 F \left (\textit {\_a} \right )}d \textit {\_a} \right ) x +c_{1} x +1\right ) x -1\right )}}{x} \\ \end{align*}

Solution by Mathematica

Time used: 0.251 (sec). Leaf size: 204

DSolve[y'[x] == F[(1 + x*y[x]^2)/x]/(x^2*y[x]),y[x],x,IncludeSingularSolutions -> True]
 

\[ \text {Solve}\left [\int _1^{y(x)}\left (\frac {K[2]}{2 F\left (\frac {x K[2]^2+1}{x}\right )-1}-\int _1^x\left (\frac {4 F\left (\frac {K[1] K[2]^2+1}{K[1]}\right ) K[2] F'\left (\frac {K[1] K[2]^2+1}{K[1]}\right )}{\left (2 F\left (\frac {K[1] K[2]^2+1}{K[1]}\right )-1\right )^2 K[1]^2}-\frac {2 K[2] F'\left (\frac {K[1] K[2]^2+1}{K[1]}\right )}{\left (2 F\left (\frac {K[1] K[2]^2+1}{K[1]}\right )-1\right ) K[1]^2}\right )dK[1]\right )dK[2]+\int _1^x-\frac {F\left (\frac {K[1] y(x)^2+1}{K[1]}\right )}{\left (2 F\left (\frac {K[1] y(x)^2+1}{K[1]}\right )-1\right ) K[1]^2}dK[1]=c_1,y(x)\right ] \]