2.168 problem 744

2.168.1 Maple step by step solution

Internal problem ID [9078]
Internal file name [OUTPUT/8013_Monday_June_06_2022_01_16_50_AM_48865191/index.tex]

Book: Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section: Chapter 1, Additional non-linear first order
Problem number: 744.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type

[_rational]

Unable to solve or complete the solution.

\[ \boxed {y^{\prime }-\frac {x}{-y+x^{4}+2 x^{2} y^{2}+y^{4}}=0} \] Unable to determine ODE type.

2.168.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & y^{\prime } y^{4}+2 y^{\prime } y^{2} x^{2}+y^{\prime } x^{4}-y^{\prime } y-x =0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & y^{\prime }=\frac {x}{-y+x^{4}+2 x^{2} y^{2}+y^{4}} \end {array} \]

Maple trace Kovacic algorithm successful

`Methods for first order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying 1st order linear 
trying Bernoulli 
trying separable 
trying inverse linear 
trying homogeneous types: 
trying Chini 
differential order: 1; looking for linear symmetries 
trying exact 
Looking for potential symmetries 
trying inverse_Riccati 
trying an equivalence to an Abel ODE 
differential order: 1; trying a linearization to 2nd order 
--- trying a change of variables {x -> y(x), y(x) -> x} 
differential order: 1; trying a linearization to 2nd order 
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -(4*x^4-4*x)*y(x)+4*x^2*(diff(y(x), x)), y(x)`   *** Sublevel 2 *** 
   Methods for second order ODEs: 
   --- Trying classification methods --- 
   trying a quadrature 
   checking if the LODE has constant coefficients 
   checking if the LODE is of Euler type 
   trying a symmetry of the form [xi=0, eta=F(x)] 
   checking if the LODE is missing y 
   -> Trying a Liouvillian solution using Kovacics algorithm 
      A Liouvillian solution exists 
      Reducible group (found an exponential solution) 
   <- Kovacics algorithm successful 
<- differential order: 1; linearization to 2nd order successful 
<- change of variables {x -> y(x), y(x) -> x} succesful`
 

Solution by Maple

Time used: 0.0 (sec). Leaf size: 511

dsolve(diff(y(x),x) = x/(-y(x)+x^4+2*x^2*y(x)^2+y(x)^4),y(x), singsol=all)
 

\begin{align*} y \left (x \right ) &= \frac {\left (-36 c_{1} x^{2}-54-c_{1}^{3}+6 \sqrt {3 c_{1}^{4} x^{2}+24 c_{1}^{2} x^{4}+48 x^{6}+3 c_{1}^{3}+108 c_{1} x^{2}+81}\right )^{\frac {1}{3}}}{6}+\frac {c_{1}^{2}-12 x^{2}}{6 \left (-36 c_{1} x^{2}-54-c_{1}^{3}+6 \sqrt {3 c_{1}^{4} x^{2}+24 c_{1}^{2} x^{4}+48 x^{6}+3 c_{1}^{3}+108 c_{1} x^{2}+81}\right )^{\frac {1}{3}}}-\frac {c_{1}}{6} \\ y \left (x \right ) &= -\frac {\left (\frac {i \sqrt {3}}{12}+\frac {1}{12}\right ) \left (-36 c_{1} x^{2}-54-c_{1}^{3}+6 \sqrt {48 x^{6}+24 c_{1}^{2} x^{4}+\left (3 c_{1}^{4}+108 c_{1} \right ) x^{2}+3 c_{1}^{3}+81}\right )^{\frac {2}{3}}+\frac {c_{1} \left (-36 c_{1} x^{2}-54-c_{1}^{3}+6 \sqrt {48 x^{6}+24 c_{1}^{2} x^{4}+\left (3 c_{1}^{4}+108 c_{1} \right ) x^{2}+3 c_{1}^{3}+81}\right )^{\frac {1}{3}}}{6}+\left (i \sqrt {3}-1\right ) \left (x^{2}-\frac {c_{1}^{2}}{12}\right )}{\left (-36 c_{1} x^{2}-54-c_{1}^{3}+6 \sqrt {48 x^{6}+24 c_{1}^{2} x^{4}+\left (3 c_{1}^{4}+108 c_{1} \right ) x^{2}+3 c_{1}^{3}+81}\right )^{\frac {1}{3}}} \\ y \left (x \right ) &= \frac {\frac {\left (i \sqrt {3}-1\right ) \left (-36 c_{1} x^{2}-54-c_{1}^{3}+6 \sqrt {48 x^{6}+24 c_{1}^{2} x^{4}+\left (3 c_{1}^{4}+108 c_{1} \right ) x^{2}+3 c_{1}^{3}+81}\right )^{\frac {2}{3}}}{12}-\frac {c_{1} \left (-36 c_{1} x^{2}-54-c_{1}^{3}+6 \sqrt {48 x^{6}+24 c_{1}^{2} x^{4}+\left (3 c_{1}^{4}+108 c_{1} \right ) x^{2}+3 c_{1}^{3}+81}\right )^{\frac {1}{3}}}{6}+\left (1+i \sqrt {3}\right ) \left (x^{2}-\frac {c_{1}^{2}}{12}\right )}{\left (-36 c_{1} x^{2}-54-c_{1}^{3}+6 \sqrt {48 x^{6}+24 c_{1}^{2} x^{4}+\left (3 c_{1}^{4}+108 c_{1} \right ) x^{2}+3 c_{1}^{3}+81}\right )^{\frac {1}{3}}} \\ \end{align*}

Solution by Mathematica

Time used: 16.665 (sec). Leaf size: 564

DSolve[y'[x] == x/(x^4 - y[x] + 2*x^2*y[x]^2 + y[x]^4),y[x],x,IncludeSingularSolutions -> True]
 

\begin{align*} y(x)\to \frac {\sqrt [3]{144 c_1 x^2+2 \sqrt {\left (12 x^2-4 c_1{}^2\right ){}^3+4 \left (36 c_1 x^2-27+4 c_1{}^3\right ){}^2}-108+16 c_1{}^3}}{6 \sqrt [3]{2}}+\frac {2^{2/3} \left (-3 x^2+c_1{}^2\right )}{3 \sqrt [3]{36 c_1 x^2+3 \sqrt {3} \sqrt {16 x^6+32 c_1{}^2 x^4+8 c_1 \left (-9+2 c_1{}^3\right ) x^2+27-8 c_1{}^3}-27+4 c_1{}^3}}+\frac {c_1}{3} \\ y(x)\to \frac {\left (-1+i \sqrt {3}\right ) \sqrt [3]{144 c_1 x^2+2 \sqrt {\left (12 x^2-4 c_1{}^2\right ){}^3+4 \left (36 c_1 x^2-27+4 c_1{}^3\right ){}^2}-108+16 c_1{}^3}}{12 \sqrt [3]{2}}+\frac {\left (1+i \sqrt {3}\right ) \left (3 x^2-c_1{}^2\right )}{3 \sqrt [3]{72 c_1 x^2+6 \sqrt {3} \sqrt {16 x^6+32 c_1{}^2 x^4+8 c_1 \left (-9+2 c_1{}^3\right ) x^2+27-8 c_1{}^3}-54+8 c_1{}^3}}+\frac {c_1}{3} \\ y(x)\to -\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{144 c_1 x^2+2 \sqrt {\left (12 x^2-4 c_1{}^2\right ){}^3+4 \left (36 c_1 x^2-27+4 c_1{}^3\right ){}^2}-108+16 c_1{}^3}}{12 \sqrt [3]{2}}+\frac {\left (1-i \sqrt {3}\right ) \left (3 x^2-c_1{}^2\right )}{3 \sqrt [3]{72 c_1 x^2+6 \sqrt {3} \sqrt {16 x^6+32 c_1{}^2 x^4+8 c_1 \left (-9+2 c_1{}^3\right ) x^2+27-8 c_1{}^3}-54+8 c_1{}^3}}+\frac {c_1}{3} \\ y(x)\to -i \sqrt {x^2} \\ y(x)\to i \sqrt {x^2} \\ \end{align*}