2.298 problem 875

2.298.1 Maple step by step solution

Internal problem ID [9208]
Internal file name [OUTPUT/8144_Monday_June_06_2022_01_54_24_AM_66718830/index.tex]

Book: Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section: Chapter 1, Additional non-linear first order
Problem number: 875.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type

[[_1st_order, `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

Unable to solve or complete the solution.

\[ \boxed {y^{\prime }+\frac {-y x -y+x^{5} \sqrt {x^{2}+y^{2}}-x^{4} \sqrt {x^{2}+y^{2}}\, y}{x \left (1+x \right )}=0} \] Unable to determine ODE type.

2.298.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & x^{4} \sqrt {x^{2}+y^{2}}\, y-x^{5} \sqrt {x^{2}+y^{2}}-x^{2} y^{\prime }+y x -y^{\prime } x +y=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & y^{\prime }=\frac {-y x -y+x^{5} \sqrt {x^{2}+y^{2}}-x^{4} \sqrt {x^{2}+y^{2}}\, y}{-x^{2}-x} \end {array} \]

Maple trace

`Methods for first order ODEs: 
--- Trying classification methods --- 
trying homogeneous types: 
differential order: 1; looking for linear symmetries 
trying exact 
Looking for potential symmetries 
trying an equivalence to an Abel ODE 
trying 1st order ODE linearizable_by_differentiation 
--- Trying Lie symmetry methods, 1st order --- 
`, `-> Computing symmetries using: way = 3 
`, `-> Computing symmetries using: way = 5`[0, (x-y)*(x^2+y^2)^(1/2)/x]
 

Solution by Maple

Time used: 0.078 (sec). Leaf size: 74

dsolve(diff(y(x),x) = -(-x*y(x)-y(x)+x^5*(y(x)^2+x^2)^(1/2)-x^4*(y(x)^2+x^2)^(1/2)*y(x))/x/(x+1),y(x), singsol=all)
 

\[ \ln \left (\frac {x \left (\sqrt {2 y \left (x \right )^{2}+2 x^{2}}+y \left (x \right )+x \right )}{y \left (x \right )-x}\right )+\sqrt {2}\, \ln \left (x +1\right )+\frac {\left (3 x^{4}-4 x^{3}+6 x^{2}-12 x \right ) \sqrt {2}}{12}-c_{1} +\ln \left (2\right )-\ln \left (x \right ) = 0 \]

Solution by Mathematica

Time used: 2.287 (sec). Leaf size: 150

DSolve[y'[x] == (y[x] + x*y[x] - x^5*Sqrt[x^2 + y[x]^2] + x^4*y[x]*Sqrt[x^2 + y[x]^2])/(x*(1 + x)),y[x],x,IncludeSingularSolutions -> True]
 

\begin{align*} y(x)\to \frac {x \tanh \left (\frac {3 x^4-4 x^3+6 x^2-12 x+12 \log (x+1)-25+12 c_1}{12 \sqrt {2}}\right ) \left (2+\sqrt {2} \tanh \left (\frac {3 x^4-4 x^3+6 x^2-12 x+12 \log (x+1)-25+12 c_1}{12 \sqrt {2}}\right )\right )}{\sqrt {2}+2 \tanh \left (\frac {3 x^4-4 x^3+6 x^2-12 x+12 \log (x+1)-25+12 c_1}{12 \sqrt {2}}\right )} \\ y(x)\to x \\ \end{align*}