2.316 problem 893

2.316.1 Solving as abelFirstKind ode
2.316.2 Maple step by step solution

Internal problem ID [9226]
Internal file name [OUTPUT/8162_Monday_June_06_2022_01_59_34_AM_10568076/index.tex]

Book: Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section: Chapter 1, Additional non-linear first order
Problem number: 893.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "abelFirstKind"

Maple gives the following as the ode type

[_rational, [_1st_order, `_with_symmetry_[F(x),G(x)]`], _Abel]

\[ \boxed {y^{\prime }-\frac {6 x +x^{3}+x^{3} y^{2}+4 x^{2} y+y^{3} x^{3}+6 y^{2} x^{2}+12 x y+8}{x^{3}}=0} \]

2.316.1 Solving as abelFirstKind ode

This is Abel first kind ODE, it has the form \[ y^{\prime }= f_0(x)+f_1(x) y +f_2(x)y^{2}+f_3(x)y^{3} \] Comparing the above to given ODE which is \begin {align*} y^{\prime }&=y^{3}+\frac {\left (x^{3}+6 x^{2}\right ) y^{2}}{x^{3}}+\frac {\left (4 x^{2}+12 x \right ) y}{x^{3}}+\frac {x^{3}+6 x +8}{x^{3}}\tag {1} \end {align*}

Therefore \begin {align*} f_0(x) &= 1+\frac {6}{x^{2}}+\frac {8}{x^{3}}\\ f_1(x) &= \frac {4}{x}+\frac {12}{x^{2}}\\ f_2(x) &= 1+\frac {6}{x}\\ f_3(x) &= 1 \end {align*}

Since \(f_2(x)=1+\frac {6}{x}\) is not zero, then the first step is to apply the following transformation to remove \(f_2\). Let \(y = u(x) - \frac {f_2}{3 f_3}\) or \begin {align*} y &= u(x) - \left ( \frac {1+\frac {6}{x}}{3} \right ) \\ &= u \left (x \right )-\frac {1}{3}-\frac {2}{x} \end {align*}

The above transformation applied to (1) gives a new ODE as \begin {align*} u^{\prime }\left (x \right ) = u \left (x \right )^{3}-\frac {u \left (x \right )}{3}+\frac {29}{27}\tag {2} \end {align*}

The above ODE (2) can now be solved as separable.

Integrating both sides gives \begin {align*} \int _{}^{u \left (x \right )}\frac {1}{\textit {\_a}^{3}-\frac {1}{3} \textit {\_a} +\frac {29}{27}}d \textit {\_a} = x +c_{2} \end {align*}

Substituting \(u=y-\frac {1}{3}-\frac {2}{x}\) in the above solution gives \begin {align*} \int _{}^{y-\frac {1}{3}-\frac {2}{x}}\frac {1}{\textit {\_a}^{3}-\frac {1}{3} \textit {\_a} +\frac {29}{27}}d \textit {\_a} = x +c_{2} \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} \int _{}^{y-\frac {1}{3}-\frac {2}{x}}\frac {1}{\textit {\_a}^{3}-\frac {1}{3} \textit {\_a} +\frac {29}{27}}d \textit {\_a} &= x +c_{2} \\ \end{align*}

Figure 638: Slope field plot

Verification of solutions

\[ \int _{}^{y-\frac {1}{3}-\frac {2}{x}}\frac {1}{\textit {\_a}^{3}-\frac {1}{3} \textit {\_a} +\frac {29}{27}}d \textit {\_a} = x +c_{2} \] Verified OK.

2.316.2 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & -y^{3} x^{3}-x^{3} y^{2}+y^{\prime } x^{3}-6 y^{2} x^{2}-4 x^{2} y-x^{3}-12 x y-6 x -8=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & y^{\prime }=\frac {6 x +x^{3}+x^{3} y^{2}+4 x^{2} y+y^{3} x^{3}+6 y^{2} x^{2}+12 x y+8}{x^{3}} \end {array} \]

Maple trace

`Methods for first order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying 1st order linear 
trying Bernoulli 
trying separable 
trying inverse linear 
trying homogeneous types: 
trying Chini 
differential order: 1; looking for linear symmetries 
trying exact 
trying Abel 
<- Abel successful`
 

Solution by Maple

Time used: 0.016 (sec). Leaf size: 41

dsolve(diff(y(x),x) = (6*x+x^3+x^3*y(x)^2+4*x^2*y(x)+x^3*y(x)^3+6*x^2*y(x)^2+12*x*y(x)+8)/x^3,y(x), singsol=all)
 

\[ y \left (x \right ) = \frac {29 \operatorname {RootOf}\left (-81 \left (\int _{}^{\textit {\_Z}}\frac {1}{841 \textit {\_a}^{3}-27 \textit {\_a} +27}d \textit {\_a} \right )+x +3 c_{1} \right ) x -3 x -18}{9 x} \]

Solution by Mathematica

Time used: 0.142 (sec). Leaf size: 80

DSolve[y'[x] == (8 + 6*x + x^3 + 12*x*y[x] + 4*x^2*y[x] + 6*x^2*y[x]^2 + x^3*y[x]^2 + x^3*y[x]^3)/x^3,y[x],x,IncludeSingularSolutions -> True]
 

\[ \text {Solve}\left [-\frac {29}{3} \text {RootSum}\left [-29 \text {$\#$1}^3+3 \sqrt [3]{29} \text {$\#$1}-29\&,\frac {\log \left (\frac {3 y(x)+\frac {x+6}{x}}{\sqrt [3]{29}}-\text {$\#$1}\right )}{\sqrt [3]{29}-29 \text {$\#$1}^2}\&\right ]=\frac {1}{9} 29^{2/3} x+c_1,y(x)\right ] \]