1.98 problem 98

1.98.1 Solving as riccati ode
1.98.2 Maple step by step solution

Internal problem ID [8435]
Internal file name [OUTPUT/7368_Sunday_June_05_2022_10_53_47_PM_20946981/index.tex]

Book: Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section: Chapter 1, linear first order
Problem number: 98.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type

[_rational, _Riccati]

\[ \boxed {x y^{\prime }+a y^{2}-y b=-c \,x^{2 b}} \]

1.98.1 Solving as riccati ode

In canonical form the ODE is \begin {align*} y' &= F(x,y)\\ &= -\frac {a \,y^{2}+c \,x^{2 b}-b y}{x} \end {align*}

This is a Riccati ODE. Comparing the ODE to solve \[ y' = -\frac {a \,y^{2}}{x}-\frac {c \,x^{2 b}}{x}+\frac {b y}{x} \] With Riccati ODE standard form \[ y' = f_0(x)+ f_1(x)y+f_2(x)y^{2} \] Shows that \(f_0(x)=-\frac {c \,x^{2 b}}{x}\), \(f_1(x)=\frac {b}{x}\) and \(f_2(x)=-\frac {a}{x}\). Let \begin {align*} y &= \frac {-u'}{f_2 u} \\ &= \frac {-u'}{-\frac {a u}{x}} \tag {1} \end {align*}

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is \begin {align*} f_2 u''(x) -\left ( f_2' + f_1 f_2 \right ) u'(x) + f_2^2 f_0 u(x) &= 0 \tag {2} \end {align*}

But \begin {align*} f_2' &=\frac {a}{x^{2}}\\ f_1 f_2 &=-\frac {b a}{x^{2}}\\ f_2^2 f_0 &=-\frac {a^{2} c \,x^{2 b}}{x^{3}} \end {align*}

Substituting the above terms back in equation (2) gives \begin {align*} -\frac {a u^{\prime \prime }\left (x \right )}{x}-\left (\frac {a}{x^{2}}-\frac {b a}{x^{2}}\right ) u^{\prime }\left (x \right )-\frac {a^{2} c \,x^{2 b} u \left (x \right )}{x^{3}} &=0 \end {align*}

Solving the above ODE (this ode solved using Maple, not this program), gives

\[ u \left (x \right ) = c_{1} \sin \left (\frac {x^{b} \sqrt {a c}}{b}\right )+c_{2} \cos \left (\frac {x^{b} \sqrt {a c}}{b}\right ) \] The above shows that \[ u^{\prime }\left (x \right ) = \frac {x^{b} \sqrt {a c}\, \left (c_{1} \cos \left (\frac {x^{b} \sqrt {a c}}{b}\right )-c_{2} \sin \left (\frac {x^{b} \sqrt {a c}}{b}\right )\right )}{x} \] Using the above in (1) gives the solution \[ y = \frac {x^{b} \sqrt {a c}\, \left (c_{1} \cos \left (\frac {x^{b} \sqrt {a c}}{b}\right )-c_{2} \sin \left (\frac {x^{b} \sqrt {a c}}{b}\right )\right )}{a \left (c_{1} \sin \left (\frac {x^{b} \sqrt {a c}}{b}\right )+c_{2} \cos \left (\frac {x^{b} \sqrt {a c}}{b}\right )\right )} \] Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac {c_{2}}{c_{1}}=c_{3}\) the following solution

\[ y = \frac {x^{b} \sqrt {a c}\, \left (c_{3} \cos \left (\frac {x^{b} \sqrt {a c}}{b}\right )-\sin \left (\frac {x^{b} \sqrt {a c}}{b}\right )\right )}{a \left (c_{3} \sin \left (\frac {x^{b} \sqrt {a c}}{b}\right )+\cos \left (\frac {x^{b} \sqrt {a c}}{b}\right )\right )} \]

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= \frac {x^{b} \sqrt {a c}\, \left (c_{3} \cos \left (\frac {x^{b} \sqrt {a c}}{b}\right )-\sin \left (\frac {x^{b} \sqrt {a c}}{b}\right )\right )}{a \left (c_{3} \sin \left (\frac {x^{b} \sqrt {a c}}{b}\right )+\cos \left (\frac {x^{b} \sqrt {a c}}{b}\right )\right )} \\ \end{align*}

Verification of solutions

\[ y = \frac {x^{b} \sqrt {a c}\, \left (c_{3} \cos \left (\frac {x^{b} \sqrt {a c}}{b}\right )-\sin \left (\frac {x^{b} \sqrt {a c}}{b}\right )\right )}{a \left (c_{3} \sin \left (\frac {x^{b} \sqrt {a c}}{b}\right )+\cos \left (\frac {x^{b} \sqrt {a c}}{b}\right )\right )} \] Verified OK.

1.98.2 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & x y^{\prime }+a y^{2}-y b =-c \,x^{2 b} \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & y^{\prime }=\frac {-a y^{2}+y b -c \,x^{2 b}}{x} \end {array} \]

Maple trace

`Methods for first order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying 1st order linear 
trying Bernoulli 
trying separable 
trying inverse linear 
trying homogeneous types: 
trying Chini 
<- Chini successful`
 

Solution by Maple

Time used: 0.016 (sec). Leaf size: 34

dsolve(x*diff(y(x),x) + a*y(x)^2 - b*y(x) + c*x^(2*b)=0,y(x), singsol=all)
 

\[ y \left (x \right ) = -\frac {\tan \left (\frac {x^{b} \sqrt {a}\, \sqrt {c}+c_{1} b}{b}\right ) \sqrt {c}\, x^{b}}{\sqrt {a}} \]

Solution by Mathematica

Time used: 0.356 (sec). Leaf size: 211

DSolve[x*y'[x] + a*y[x]^2 - b*y[x] + c*x^(2*b)==0,y[x],x,IncludeSingularSolutions -> True]
 

\begin{align*} y(x)\to \frac {\sqrt {-c} x^b \left (-\cos \left (\frac {\sqrt {-a} \sqrt {-c} x^b}{b}\right )+c_1 \sin \left (\frac {\sqrt {-a} \sqrt {-c} x^b}{b}\right )\right )}{\sqrt {-a} \left (\sin \left (\frac {\sqrt {-a} \sqrt {-c} x^b}{b}\right )+c_1 \cos \left (\frac {\sqrt {-a} \sqrt {-c} x^b}{b}\right )\right )} \\ y(x)\to \frac {\sqrt {-c} x^b \tan \left (\frac {\sqrt {-a} \sqrt {-c} x^b}{b}\right )}{\sqrt {-a}} \\ y(x)\to \frac {\sqrt {-c} x^b \tan \left (\frac {\sqrt {-a} \sqrt {-c} x^b}{b}\right )}{\sqrt {-a}} \\ \end{align*}