2.413 problem 990

2.413.1 Solving as riccati ode
2.413.2 Maple step by step solution

Internal problem ID [9323]
Internal file name [OUTPUT/8259_Monday_June_06_2022_02_34_03_AM_45011922/index.tex]

Book: Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section: Chapter 1, Additional non-linear first order
Problem number: 990.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type

[[_1st_order, `_with_symmetry_[F(x),G(x)]`], _Riccati]

\[ \boxed {y^{\prime }+F \left (x \right ) \left (-y^{2}+2 y x^{2}+1-x^{4}\right )=2 x} \]

2.413.1 Solving as riccati ode

In canonical form the ODE is \begin {align*} y' &= F(x,y)\\ &= F \left (x \right ) x^{4}-2 F \left (x \right ) x^{2} y +F \left (x \right ) y^{2}-F \left (x \right )+2 x \end {align*}

This is a Riccati ODE. Comparing the ODE to solve \[ y' = F \left (x \right ) x^{4}-2 F \left (x \right ) x^{2} y +F \left (x \right ) y^{2}-F \left (x \right )+2 x \] With Riccati ODE standard form \[ y' = f_0(x)+ f_1(x)y+f_2(x)y^{2} \] Shows that \(f_0(x)=F \left (x \right ) x^{4}-F \left (x \right )+2 x\), \(f_1(x)=-2 x^{2} F \left (x \right )\) and \(f_2(x)=F \left (x \right )\). Let \begin {align*} y &= \frac {-u'}{f_2 u} \\ &= \frac {-u'}{F \left (x \right ) u} \tag {1} \end {align*}

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is \begin {align*} f_2 u''(x) -\left ( f_2' + f_1 f_2 \right ) u'(x) + f_2^2 f_0 u(x) &= 0 \tag {2} \end {align*}

But \begin {align*} f_2' &=F^{\prime }\left (x \right )\\ f_1 f_2 &=-2 F \left (x \right )^{2} x^{2}\\ f_2^2 f_0 &=F \left (x \right )^{2} \left (F \left (x \right ) x^{4}-F \left (x \right )+2 x \right ) \end {align*}

Substituting the above terms back in equation (2) gives \begin {align*} F \left (x \right ) u^{\prime \prime }\left (x \right )-\left (F^{\prime }\left (x \right )-2 F \left (x \right )^{2} x^{2}\right ) u^{\prime }\left (x \right )+F \left (x \right )^{2} \left (F \left (x \right ) x^{4}-F \left (x \right )+2 x \right ) u \left (x \right ) &=0 \end {align*}

Solving the above ODE (this ode solved using Maple, not this program), gives

\[ u \left (x \right ) = \left ({\mathrm e}^{-\left (\int x^{2} F \left (x \right )d x \right )+\int F \left (x \right )d x}-c_{1} {\mathrm e}^{-\left (\int x^{2} F \left (x \right )d x \right )-\left (\int F \left (x \right )d x \right )}\right ) c_{2} \] The above shows that \[ u^{\prime }\left (x \right ) = c_{2} \left (c_{1} \left (x^{2}+1\right ) {\mathrm e}^{-\left (\int x^{2} F \left (x \right )d x \right )-\left (\int F \left (x \right )d x \right )}+\left (-x^{2}+1\right ) {\mathrm e}^{-\left (\int x^{2} F \left (x \right )d x \right )+\int F \left (x \right )d x}\right ) F \left (x \right ) \] Using the above in (1) gives the solution \[ y = -\frac {c_{1} \left (x^{2}+1\right ) {\mathrm e}^{-\left (\int x^{2} F \left (x \right )d x \right )-\left (\int F \left (x \right )d x \right )}+\left (-x^{2}+1\right ) {\mathrm e}^{-\left (\int x^{2} F \left (x \right )d x \right )+\int F \left (x \right )d x}}{{\mathrm e}^{-\left (\int x^{2} F \left (x \right )d x \right )+\int F \left (x \right )d x}-c_{1} {\mathrm e}^{-\left (\int x^{2} F \left (x \right )d x \right )-\left (\int F \left (x \right )d x \right )}} \] Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac {c_{2}}{c_{1}}=c_{3}\) the following solution

\[ y = \frac {-{\mathrm e}^{-\left (\int x^{2} F \left (x \right )d x \right )-\left (\int F \left (x \right )d x \right )} c_{3} x^{2}+{\mathrm e}^{-\left (\int x^{2} F \left (x \right )d x \right )+\int F \left (x \right )d x} x^{2}-c_{3} {\mathrm e}^{-\left (\int x^{2} F \left (x \right )d x \right )-\left (\int F \left (x \right )d x \right )}-{\mathrm e}^{-\left (\int x^{2} F \left (x \right )d x \right )+\int F \left (x \right )d x}}{{\mathrm e}^{-\left (\int x^{2} F \left (x \right )d x \right )+\int F \left (x \right )d x}-c_{3} {\mathrm e}^{-\left (\int x^{2} F \left (x \right )d x \right )-\left (\int F \left (x \right )d x \right )}} \]

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= \frac {-{\mathrm e}^{-\left (\int x^{2} F \left (x \right )d x \right )-\left (\int F \left (x \right )d x \right )} c_{3} x^{2}+{\mathrm e}^{-\left (\int x^{2} F \left (x \right )d x \right )+\int F \left (x \right )d x} x^{2}-c_{3} {\mathrm e}^{-\left (\int x^{2} F \left (x \right )d x \right )-\left (\int F \left (x \right )d x \right )}-{\mathrm e}^{-\left (\int x^{2} F \left (x \right )d x \right )+\int F \left (x \right )d x}}{{\mathrm e}^{-\left (\int x^{2} F \left (x \right )d x \right )+\int F \left (x \right )d x}-c_{3} {\mathrm e}^{-\left (\int x^{2} F \left (x \right )d x \right )-\left (\int F \left (x \right )d x \right )}} \\ \end{align*}

Verification of solutions

\[ y = \frac {-{\mathrm e}^{-\left (\int x^{2} F \left (x \right )d x \right )-\left (\int F \left (x \right )d x \right )} c_{3} x^{2}+{\mathrm e}^{-\left (\int x^{2} F \left (x \right )d x \right )+\int F \left (x \right )d x} x^{2}-c_{3} {\mathrm e}^{-\left (\int x^{2} F \left (x \right )d x \right )-\left (\int F \left (x \right )d x \right )}-{\mathrm e}^{-\left (\int x^{2} F \left (x \right )d x \right )+\int F \left (x \right )d x}}{{\mathrm e}^{-\left (\int x^{2} F \left (x \right )d x \right )+\int F \left (x \right )d x}-c_{3} {\mathrm e}^{-\left (\int x^{2} F \left (x \right )d x \right )-\left (\int F \left (x \right )d x \right )}} \] Verified OK.

2.413.2 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & y^{\prime }+F \left (x \right ) \left (-y^{2}+2 y x^{2}+1-x^{4}\right )=2 x \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & y^{\prime }=-F \left (x \right ) \left (-y^{2}+2 y x^{2}+1-x^{4}\right )+2 x \end {array} \]

Maple trace

`Methods for first order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying 1st order linear 
trying Bernoulli 
trying separable 
trying inverse linear 
trying homogeneous types: 
trying Chini 
differential order: 1; looking for linear symmetries 
trying exact 
Looking for potential symmetries 
trying Riccati 
trying Riccati sub-methods: 
   trying Riccati_symmetries 
   trying Riccati to 2nd Order 
   -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -(2*F(x)^2*x^2-(diff(F(x), x)))*(diff(y(x), x))/F(x)-F(x)*(F(x)*x^4-F( 
      Methods for second order ODEs: 
      --- Trying classification methods --- 
      trying a symmetry of the form [xi=0, eta=F(x)] 
      checking if the LODE is missing y 
      -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius 
      -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f) 
      -> Trying changes of variables to rationalize or make the ODE simpler 
         trying a symmetry of the form [xi=0, eta=F(x)] 
         checking if the LODE is missing y 
         -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius 
         -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f) 
            trying a symmetry of the form [xi=0, eta=F(x)] 
            trying 2nd order exact linear 
            trying symmetries linear in x and y(x) 
            trying to convert to a linear ODE with constant coefficients 
      <- unable to find a useful change of variables 
         trying a symmetry of the form [xi=0, eta=F(x)] 
         trying 2nd order exact linear 
         trying symmetries linear in x and y(x) 
         trying to convert to a linear ODE with constant coefficients 
         trying 2nd order, integrating factor of the form mu(x,y) 
         trying a symmetry of the form [xi=0, eta=F(x)] 
         checking if the LODE is missing y 
         -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius 
         -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f) 
         -> Trying changes of variables to rationalize or make the ODE simpler 
            trying a symmetry of the form [xi=0, eta=F(x)] 
            checking if the LODE is missing y 
            -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius 
            -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f) 
               trying a symmetry of the form [xi=0, eta=F(x)] 
               trying 2nd order exact linear 
               trying symmetries linear in x and y(x) 
               trying to convert to a linear ODE with constant coefficients 
         <- unable to find a useful change of variables 
            trying a symmetry of the form [xi=0, eta=F(x)] 
         trying to convert to an ODE of Bessel type 
   -> Trying a change of variables to reduce to Bernoulli 
   -> Calling odsolve with the ODE`, diff(y(x), x)-(F(x)*y(x)^2+y(x)-2*F(x)*x^3*y(x)+x^2*(F(x)*x^4-F(x)+2*x))/x, y(x), explicit` 
      Methods for first order ODEs: 
      --- Trying classification methods --- 
      trying a quadrature 
      trying 1st order linear 
      trying Bernoulli 
      trying separable 
      trying inverse linear 
      trying homogeneous types: 
      trying Chini 
      differential order: 1; looking for linear symmetries 
      trying exact 
      Looking for potential symmetries 
      trying Riccati 
      trying Riccati sub-methods: 
         trying Riccati_symmetries 
      trying inverse_Riccati 
      trying 1st order ODE linearizable_by_differentiation 
   -> trying a symmetry pattern of the form [F(x)*G(y), 0] 
   -> trying a symmetry pattern of the form [0, F(x)*G(y)] 
   -> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)] 
   <- symmetry pattern of the form [F(x),G(x)*y+H(x)] successful 
   <- Riccati with symmetry pattern of the form [F(x),G(x)*y+H(x)] successful`
 

Solution by Maple

Time used: 0.0 (sec). Leaf size: 44

dsolve(diff(y(x),x) = -F(x)*(-y(x)^2+2*x^2*y(x)+1-x^4)+2*x,y(x), singsol=all)
 

\[ y \left (x \right ) = \frac {-x^{2} {\mathrm e}^{2 \left (\int F \left (x \right )d x \right )}+c_{1} x^{2}+{\mathrm e}^{2 \left (\int F \left (x \right )d x \right )}+c_{1}}{-{\mathrm e}^{2 \left (\int F \left (x \right )d x \right )}+c_{1}} \]

Solution by Mathematica

Time used: 0.297 (sec). Leaf size: 67

DSolve[y'[x] == 2*x - F[x]*(1 - x^4 + 2*x^2*y[x] - y[x]^2),y[x],x,IncludeSingularSolutions -> True]
 

\begin{align*} y(x)\to \frac {\exp \left (\int _1^x2 F(K[5])dK[5]\right )}{-\int _1^x\exp \left (\int _1^{K[6]}2 F(K[5])dK[5]\right ) F(K[6])dK[6]+c_1}+x^2+1 \\ y(x)\to x^2+1 \\ \end{align*}