2.8 problem problem 17

2.8.1 Solved as higher order constant coeff ode
2.8.2 Maple step by step solution
2.8.3 Maple trace
2.8.4 Maple dsolve solution
2.8.5 Mathematica DSolve solution

Internal problem ID [942]
Book : Differential equations and linear algebra, 4th ed., Edwards and Penney
Section : Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with Constant Coefficients. Page 300
Problem number : problem 17
Date solved : Thursday, October 17, 2024 at 01:25:20 AM
CAS classification : [[_high_order, _missing_x]]

Solve

\begin{align*} 6 y^{\prime \prime \prime \prime }+11 y^{\prime \prime }+4 y&=0 \end{align*}

2.8.1 Solved as higher order constant coeff ode

Time used: 0.065 (sec)

The characteristic equation is

\[ 6 \lambda ^{4}+11 \lambda ^{2}+4 = 0 \]

The roots of the above equation are

\begin{align*} \lambda _1 &= \frac {i \sqrt {2}}{2}\\ \lambda _2 &= -\frac {i \sqrt {2}}{2}\\ \lambda _3 &= \frac {2 i \sqrt {3}}{3}\\ \lambda _4 &= -\frac {2 i \sqrt {3}}{3} \end{align*}

Therefore the homogeneous solution is

\[ y_h(x)={\mathrm e}^{-\frac {i \sqrt {2}\, x}{2}} c_1 +{\mathrm e}^{\frac {2 i \sqrt {3}\, x}{3}} c_2 +{\mathrm e}^{\frac {i \sqrt {2}\, x}{2}} c_3 +{\mathrm e}^{-\frac {2 i \sqrt {3}\, x}{3}} c_4 \]

The fundamental set of solutions for the homogeneous solution are the following

\begin{align*} y_1 &= {\mathrm e}^{-\frac {i \sqrt {2}\, x}{2}}\\ y_2 &= {\mathrm e}^{\frac {2 i \sqrt {3}\, x}{3}}\\ y_3 &= {\mathrm e}^{\frac {i \sqrt {2}\, x}{2}}\\ y_4 &= {\mathrm e}^{-\frac {2 i \sqrt {3}\, x}{3}} \end{align*}

2.8.2 Maple step by step solution
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & 6 \frac {d^{4}}{d x^{4}}y \left (x \right )+11 \frac {d^{2}}{d x^{2}}y \left (x \right )+4 y \left (x \right )=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 4 \\ {} & {} & \frac {d^{4}}{d x^{4}}y \left (x \right ) \\ \bullet & {} & \textrm {Isolate 4th derivative}\hspace {3pt} \\ {} & {} & \frac {d^{4}}{d x^{4}}y \left (x \right )=-\frac {11 \frac {d^{2}}{d x^{2}}y \left (x \right )}{6}-\frac {2 y \left (x \right )}{3} \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y \left (x \right )\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & \frac {d^{4}}{d x^{4}}y \left (x \right )+\frac {11 \frac {d^{2}}{d x^{2}}y \left (x \right )}{6}+\frac {2 y \left (x \right )}{3}=0 \\ \square & {} & \textrm {Convert linear ODE into a system of first order ODEs}\hspace {3pt} \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{1}\left (x \right ) \\ {} & {} & y_{1}\left (x \right )=y \left (x \right ) \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{2}\left (x \right ) \\ {} & {} & y_{2}\left (x \right )=\frac {d}{d x}y \left (x \right ) \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{3}\left (x \right ) \\ {} & {} & y_{3}\left (x \right )=\frac {d^{2}}{d x^{2}}y \left (x \right ) \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{4}\left (x \right ) \\ {} & {} & y_{4}\left (x \right )=\frac {d^{3}}{d x^{3}}y \left (x \right ) \\ {} & \circ & \textrm {Isolate for}\hspace {3pt} \frac {d}{d x}y_{4}\left (x \right )\hspace {3pt}\textrm {using original ODE}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y_{4}\left (x \right )=-\frac {11 y_{3}\left (x \right )}{6}-\frac {2 y_{1}\left (x \right )}{3} \\ & {} & \textrm {Convert linear ODE into a system of first order ODEs}\hspace {3pt} \\ {} & {} & \left [y_{2}\left (x \right )=\frac {d}{d x}y_{1}\left (x \right ), y_{3}\left (x \right )=\frac {d}{d x}y_{2}\left (x \right ), y_{4}\left (x \right )=\frac {d}{d x}y_{3}\left (x \right ), \frac {d}{d x}y_{4}\left (x \right )=-\frac {11 y_{3}\left (x \right )}{6}-\frac {2 y_{1}\left (x \right )}{3}\right ] \\ \bullet & {} & \textrm {Define vector}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}\left (x \right )=\left [\begin {array}{c} y_{1}\left (x \right ) \\ y_{2}\left (x \right ) \\ y_{3}\left (x \right ) \\ y_{4}\left (x \right ) \end {array}\right ] \\ \bullet & {} & \textrm {System to solve}\hspace {3pt} \\ {} & {} & \frac {d}{d x}{\moverset {\rightarrow }{y}}\left (x \right )=\left [\begin {array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -\frac {2}{3} & 0 & -\frac {11}{6} & 0 \end {array}\right ]\cdot {\moverset {\rightarrow }{y}}\left (x \right ) \\ \bullet & {} & \textrm {Define the coefficient matrix}\hspace {3pt} \\ {} & {} & A =\left [\begin {array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -\frac {2}{3} & 0 & -\frac {11}{6} & 0 \end {array}\right ] \\ \bullet & {} & \textrm {Rewrite the system as}\hspace {3pt} \\ {} & {} & \frac {d}{d x}{\moverset {\rightarrow }{y}}\left (x \right )=A \cdot {\moverset {\rightarrow }{y}}\left (x \right ) \\ \bullet & {} & \textrm {To solve the system, find the eigenvalues and eigenvectors of}\hspace {3pt} A \\ \bullet & {} & \textrm {Eigenpairs of}\hspace {3pt} A \\ {} & {} & \left [\left [-\frac {2 \,\mathrm {I}}{3} \sqrt {3}, \left [\begin {array}{c} -\frac {3 \,\mathrm {I}}{8} \sqrt {3} \\ -\frac {3}{4} \\ \frac {\mathrm {I}}{2} \sqrt {3} \\ 1 \end {array}\right ]\right ], \left [-\frac {\mathrm {I}}{2} \sqrt {2}, \left [\begin {array}{c} -2 \,\mathrm {I} \sqrt {2} \\ -2 \\ \mathrm {I} \sqrt {2} \\ 1 \end {array}\right ]\right ], \left [\frac {\mathrm {I}}{2} \sqrt {2}, \left [\begin {array}{c} 2 \,\mathrm {I} \sqrt {2} \\ -2 \\ \mathrm {-I} \sqrt {2} \\ 1 \end {array}\right ]\right ], \left [\frac {2 \,\mathrm {I}}{3} \sqrt {3}, \left [\begin {array}{c} \frac {3 \,\mathrm {I}}{8} \sqrt {3} \\ -\frac {3}{4} \\ -\frac {\mathrm {I}}{2} \sqrt {3} \\ 1 \end {array}\right ]\right ]\right ] \\ \bullet & {} & \textrm {Consider complex eigenpair, complex conjugate eigenvalue can be ignored}\hspace {3pt} \\ {} & {} & \left [-\frac {2 \,\mathrm {I}}{3} \sqrt {3}, \left [\begin {array}{c} -\frac {3 \,\mathrm {I}}{8} \sqrt {3} \\ -\frac {3}{4} \\ \frac {\mathrm {I}}{2} \sqrt {3} \\ 1 \end {array}\right ]\right ] \\ \bullet & {} & \textrm {Solution from eigenpair}\hspace {3pt} \\ {} & {} & {\mathrm e}^{-\frac {2 \,\mathrm {I}}{3} \sqrt {3}\, x}\cdot \left [\begin {array}{c} -\frac {3 \,\mathrm {I}}{8} \sqrt {3} \\ -\frac {3}{4} \\ \frac {\mathrm {I}}{2} \sqrt {3} \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {Use Euler identity to write solution in terms of}\hspace {3pt} \sin \hspace {3pt}\textrm {and}\hspace {3pt} \cos \\ {} & {} & \left (\cos \left (\frac {2 \sqrt {3}\, x}{3}\right )-\mathrm {I} \sin \left (\frac {2 \sqrt {3}\, x}{3}\right )\right )\cdot \left [\begin {array}{c} -\frac {3 \,\mathrm {I}}{8} \sqrt {3} \\ -\frac {3}{4} \\ \frac {\mathrm {I}}{2} \sqrt {3} \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {Simplify expression}\hspace {3pt} \\ {} & {} & \left [\begin {array}{c} -\frac {3 \,\mathrm {I}}{8} \left (\cos \left (\frac {2 \sqrt {3}\, x}{3}\right )-\mathrm {I} \sin \left (\frac {2 \sqrt {3}\, x}{3}\right )\right ) \sqrt {3} \\ -\frac {3 \cos \left (\frac {2 \sqrt {3}\, x}{3}\right )}{4}+\frac {3 \,\mathrm {I} \sin \left (\frac {2 \sqrt {3}\, x}{3}\right )}{4} \\ \frac {\mathrm {I}}{2} \left (\cos \left (\frac {2 \sqrt {3}\, x}{3}\right )-\mathrm {I} \sin \left (\frac {2 \sqrt {3}\, x}{3}\right )\right ) \sqrt {3} \\ \cos \left (\frac {2 \sqrt {3}\, x}{3}\right )-\mathrm {I} \sin \left (\frac {2 \sqrt {3}\, x}{3}\right ) \end {array}\right ] \\ \bullet & {} & \textrm {Both real and imaginary parts are solutions to the homogeneous system}\hspace {3pt} \\ {} & {} & \left [{\moverset {\rightarrow }{y}}_{1}\left (x \right )=\left [\begin {array}{c} -\frac {3 \sqrt {3}\, \sin \left (\frac {2 \sqrt {3}\, x}{3}\right )}{8} \\ -\frac {3 \cos \left (\frac {2 \sqrt {3}\, x}{3}\right )}{4} \\ \frac {\sqrt {3}\, \sin \left (\frac {2 \sqrt {3}\, x}{3}\right )}{2} \\ \cos \left (\frac {2 \sqrt {3}\, x}{3}\right ) \end {array}\right ], {\moverset {\rightarrow }{y}}_{2}\left (x \right )=\left [\begin {array}{c} -\frac {3 \sqrt {3}\, \cos \left (\frac {2 \sqrt {3}\, x}{3}\right )}{8} \\ \frac {3 \sin \left (\frac {2 \sqrt {3}\, x}{3}\right )}{4} \\ \frac {\sqrt {3}\, \cos \left (\frac {2 \sqrt {3}\, x}{3}\right )}{2} \\ -\sin \left (\frac {2 \sqrt {3}\, x}{3}\right ) \end {array}\right ]\right ] \\ \bullet & {} & \textrm {Consider complex eigenpair, complex conjugate eigenvalue can be ignored}\hspace {3pt} \\ {} & {} & \left [-\frac {\mathrm {I}}{2} \sqrt {2}, \left [\begin {array}{c} -2 \,\mathrm {I} \sqrt {2} \\ -2 \\ \mathrm {I} \sqrt {2} \\ 1 \end {array}\right ]\right ] \\ \bullet & {} & \textrm {Solution from eigenpair}\hspace {3pt} \\ {} & {} & {\mathrm e}^{-\frac {\mathrm {I}}{2} \sqrt {2}\, x}\cdot \left [\begin {array}{c} -2 \,\mathrm {I} \sqrt {2} \\ -2 \\ \mathrm {I} \sqrt {2} \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {Use Euler identity to write solution in terms of}\hspace {3pt} \sin \hspace {3pt}\textrm {and}\hspace {3pt} \cos \\ {} & {} & \left (\cos \left (\frac {\sqrt {2}\, x}{2}\right )-\mathrm {I} \sin \left (\frac {\sqrt {2}\, x}{2}\right )\right )\cdot \left [\begin {array}{c} -2 \,\mathrm {I} \sqrt {2} \\ -2 \\ \mathrm {I} \sqrt {2} \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {Simplify expression}\hspace {3pt} \\ {} & {} & \left [\begin {array}{c} -2 \,\mathrm {I} \left (\cos \left (\frac {\sqrt {2}\, x}{2}\right )-\mathrm {I} \sin \left (\frac {\sqrt {2}\, x}{2}\right )\right ) \sqrt {2} \\ -2 \cos \left (\frac {\sqrt {2}\, x}{2}\right )+2 \,\mathrm {I} \sin \left (\frac {\sqrt {2}\, x}{2}\right ) \\ \mathrm {I} \left (\cos \left (\frac {\sqrt {2}\, x}{2}\right )-\mathrm {I} \sin \left (\frac {\sqrt {2}\, x}{2}\right )\right ) \sqrt {2} \\ \cos \left (\frac {\sqrt {2}\, x}{2}\right )-\mathrm {I} \sin \left (\frac {\sqrt {2}\, x}{2}\right ) \end {array}\right ] \\ \bullet & {} & \textrm {Both real and imaginary parts are solutions to the homogeneous system}\hspace {3pt} \\ {} & {} & \left [{\moverset {\rightarrow }{y}}_{3}\left (x \right )=\left [\begin {array}{c} -2 \sqrt {2}\, \sin \left (\frac {\sqrt {2}\, x}{2}\right ) \\ -2 \cos \left (\frac {\sqrt {2}\, x}{2}\right ) \\ \sqrt {2}\, \sin \left (\frac {\sqrt {2}\, x}{2}\right ) \\ \cos \left (\frac {\sqrt {2}\, x}{2}\right ) \end {array}\right ], {\moverset {\rightarrow }{y}}_{4}\left (x \right )=\left [\begin {array}{c} -2 \sqrt {2}\, \cos \left (\frac {\sqrt {2}\, x}{2}\right ) \\ 2 \sin \left (\frac {\sqrt {2}\, x}{2}\right ) \\ \sqrt {2}\, \cos \left (\frac {\sqrt {2}\, x}{2}\right ) \\ -\sin \left (\frac {\sqrt {2}\, x}{2}\right ) \end {array}\right ]\right ] \\ \bullet & {} & \textrm {General solution to the system of ODEs}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}=\mathit {C1} {\moverset {\rightarrow }{y}}_{1}\left (x \right )+\mathit {C2} {\moverset {\rightarrow }{y}}_{2}\left (x \right )+\mathit {C3} {\moverset {\rightarrow }{y}}_{3}\left (x \right )+\mathit {C4} {\moverset {\rightarrow }{y}}_{4}\left (x \right ) \\ \bullet & {} & \textrm {Substitute solutions into the general solution}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}=\left [\begin {array}{c} -2 \mathit {C4} \sqrt {2}\, \cos \left (\frac {\sqrt {2}\, x}{2}\right )-2 \mathit {C3} \sqrt {2}\, \sin \left (\frac {\sqrt {2}\, x}{2}\right )-\frac {3 \mathit {C2} \sqrt {3}\, \cos \left (\frac {2 \sqrt {3}\, x}{3}\right )}{8}-\frac {3 \mathit {C1} \sqrt {3}\, \sin \left (\frac {2 \sqrt {3}\, x}{3}\right )}{8} \\ 2 \mathit {C4} \sin \left (\frac {\sqrt {2}\, x}{2}\right )-2 \mathit {C3} \cos \left (\frac {\sqrt {2}\, x}{2}\right )+\frac {3 \mathit {C2} \sin \left (\frac {2 \sqrt {3}\, x}{3}\right )}{4}-\frac {3 \mathit {C1} \cos \left (\frac {2 \sqrt {3}\, x}{3}\right )}{4} \\ \mathit {C4} \sqrt {2}\, \cos \left (\frac {\sqrt {2}\, x}{2}\right )+\mathit {C3} \sqrt {2}\, \sin \left (\frac {\sqrt {2}\, x}{2}\right )+\frac {\mathit {C2} \sqrt {3}\, \cos \left (\frac {2 \sqrt {3}\, x}{3}\right )}{2}+\frac {\mathit {C1} \sqrt {3}\, \sin \left (\frac {2 \sqrt {3}\, x}{3}\right )}{2} \\ -\mathit {C4} \sin \left (\frac {\sqrt {2}\, x}{2}\right )+\mathit {C3} \cos \left (\frac {\sqrt {2}\, x}{2}\right )-\mathit {C2} \sin \left (\frac {2 \sqrt {3}\, x}{3}\right )+\mathit {C1} \cos \left (\frac {2 \sqrt {3}\, x}{3}\right ) \end {array}\right ] \\ \bullet & {} & \textrm {First component of the vector is the solution to the ODE}\hspace {3pt} \\ {} & {} & y \left (x \right )=-2 \mathit {C4} \sqrt {2}\, \cos \left (\frac {\sqrt {2}\, x}{2}\right )-2 \mathit {C3} \sqrt {2}\, \sin \left (\frac {\sqrt {2}\, x}{2}\right )-\frac {3 \mathit {C2} \sqrt {3}\, \cos \left (\frac {2 \sqrt {3}\, x}{3}\right )}{8}-\frac {3 \mathit {C1} \sqrt {3}\, \sin \left (\frac {2 \sqrt {3}\, x}{3}\right )}{8} \end {array} \]

2.8.3 Maple trace
`Methods for high order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
<- constant coefficients successful`
 
2.8.4 Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 41

dsolve(6*diff(diff(diff(diff(y(x),x),x),x),x)+11*diff(diff(y(x),x),x)+4*y(x) = 0, 
       y(x),singsol=all)
 
\[ y = c_1 \sin \left (\frac {2 \sqrt {3}\, x}{3}\right )+c_2 \cos \left (\frac {2 \sqrt {3}\, x}{3}\right )+c_3 \sin \left (\frac {\sqrt {2}\, x}{2}\right )+c_4 \cos \left (\frac {\sqrt {2}\, x}{2}\right ) \]
2.8.5 Mathematica DSolve solution

Solving time : 0.007 (sec)
Leaf size : 94

DSolve[{D[y[x],{x,4}]+11*D[y[x],{x,2}]+4*y[x]==0,{}}, 
       y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_3 \cos \left (\sqrt {\frac {1}{2} \left (11-\sqrt {105}\right )} x\right )+c_1 \cos \left (\sqrt {\frac {1}{2} \left (11+\sqrt {105}\right )} x\right )+c_4 \sin \left (\sqrt {\frac {1}{2} \left (11-\sqrt {105}\right )} x\right )+c_2 \sin \left (\sqrt {\frac {1}{2} \left (11+\sqrt {105}\right )} x\right ) \]