6.15 problem Problem 37

6.15.1 Maple step by step solution

Internal problem ID [2739]
Internal file name [OUTPUT/2231_Sunday_June_05_2022_02_55_39_AM_56463461/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502
Problem number: Problem 37.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_ODE_non_constant_coefficients_of_type_Euler"

Maple gives the following as the ode type

[[_3rd_order, _missing_y]]

\[ \boxed {x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-6 y^{\prime } x=0} \] This is Euler ODE of higher order. Let \(y = x^{\lambda }\). Hence \begin {align*} y^{\prime } &= \lambda \,x^{\lambda -1}\\ y^{\prime \prime } &= \lambda \left (\lambda -1\right ) x^{\lambda -2}\\ y^{\prime \prime \prime } &= \lambda \left (\lambda -1\right ) \left (\lambda -2\right ) x^{\lambda -3} \end {align*}

Substituting these back into \[ x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-6 y^{\prime } x = 0 \] gives \[ -6 x \lambda \,x^{\lambda -1}+3 x^{2} \lambda \left (\lambda -1\right ) x^{\lambda -2}+x^{3} \lambda \left (\lambda -1\right ) \left (\lambda -2\right ) x^{\lambda -3} = 0 \] Which simplifies to \[ -6 \lambda \,x^{\lambda }+3 \lambda \left (\lambda -1\right ) x^{\lambda }+\lambda \left (\lambda -1\right ) \left (\lambda -2\right ) x^{\lambda } = 0 \] And since \(x^{\lambda }\neq 0\) then dividing through by \(x^{\lambda }\), the above becomes

\[ -6 \lambda +3 \lambda \left (\lambda -1\right )+\lambda \left (\lambda -1\right ) \left (\lambda -2\right ) = 0 \] Simplifying gives the characteristic equation as \[ \lambda ^{3}-7 \lambda = 0 \] Solving the above gives the following roots \begin {align*} \lambda _1 &= 0\\ \lambda _2 &= \sqrt {7}\\ \lambda _3 &= -\sqrt {7} \end {align*}

This table summarises the result

root multiplicity type of root
\(0\) \(1\) real root
\(\sqrt {7}\) \(1\) real root
\(-\sqrt {7}\) \(1\) real root

The solution is generated by going over the above table. For each real root \(\lambda \) of multiplicity one generates a \(c_1x^{\lambda }\) basis solution. Each real root of multiplicty two, generates \(c_1x^{\lambda }\) and \(c_2x^{\lambda } \ln \left (x \right )\) basis solutions. Each real root of multiplicty three, generates \(c_1x^{\lambda }\) and \(c_2x^{\lambda } \ln \left (x \right )\) and \(c_3x^{\lambda } \ln \left (x \right )^{2}\) basis solutions, and so on. Each complex root \(\alpha \pm i \beta \) of multiplicity one generates \(x^{\alpha } \left (c_1\cos (\beta \ln \left (x \right ))+c_2\sin (\beta \ln \left (x \right ))\right )\) basis solutions. And each complex root \(\alpha \pm i \beta \) of multiplicity two generates \(\ln \left (x \right ) x^{\alpha }\left (c_1\cos (\beta \ln \left (x \right ))+c_2\sin (\beta \ln \left (x \right ))\right )\) basis solutions. And each complex root \(\alpha \pm i \beta \) of multiplicity three generates \(\ln \left (x \right )^{2} x^{\alpha }\left (c_1\cos (\beta \ln \left (x \right ))+c_2\sin (\beta \ln \left (x \right ))\right )\) basis solutions. And so on. Using the above show that the solution is

\[ y = c_{1} +c_{2} x^{\sqrt {7}}+c_{3} x^{-\sqrt {7}} \] The fundamental set of solutions for the homogeneous solution are the following \begin {align*} y_1 &= 1\\ y_2 &= x^{\sqrt {7}}\\ y_3 &= x^{-\sqrt {7}} \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= c_{1} +c_{2} x^{\sqrt {7}}+c_{3} x^{-\sqrt {7}} \\ \end{align*}

Verification of solutions

\[ y = c_{1} +c_{2} x^{\sqrt {7}}+c_{3} x^{-\sqrt {7}} \] Verified OK.

6.15.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & y^{\prime \prime \prime } x^{3}+3 x^{2} y^{\prime \prime }-6 y^{\prime } x =0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 3 \\ {} & {} & y^{\prime \prime \prime } \\ \bullet & {} & \textrm {Isolate 3rd derivative}\hspace {3pt} \\ {} & {} & y^{\prime \prime \prime }=-\frac {3 \left (x y^{\prime \prime }-2 y^{\prime }\right )}{x^{2}} \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & y^{\prime \prime \prime }+\frac {3 y^{\prime \prime }}{x}-\frac {6 y^{\prime }}{x^{2}}=0 \\ \bullet & {} & \textrm {Multiply by denominators of the ODE}\hspace {3pt} \\ {} & {} & y^{\prime \prime \prime } x^{2}+3 x y^{\prime \prime }-6 y^{\prime }=0 \\ \bullet & {} & \textrm {Make a change of variables}\hspace {3pt} \\ {} & {} & t =\ln \left (x \right ) \\ \square & {} & \textrm {Substitute the change of variables back into the ODE}\hspace {3pt} \\ {} & \circ & \textrm {Calculate the}\hspace {3pt} \hspace {3pt}\textrm {1st}\hspace {3pt} \hspace {3pt}\textrm {derivative of}\hspace {3pt} \hspace {3pt}\textrm {y}\hspace {3pt} \hspace {3pt}\textrm {with respect to}\hspace {3pt} \hspace {3pt}\textrm {x}\hspace {3pt} \hspace {3pt}\textrm {, using the chain rule}\hspace {3pt} \\ {} & {} & y^{\prime }=\left (\frac {d}{d t}y \left (t \right )\right ) t^{\prime }\left (x \right ) \\ {} & \circ & \textrm {Compute derivative}\hspace {3pt} \\ {} & {} & y^{\prime }=\frac {\frac {d}{d t}y \left (t \right )}{x} \\ {} & \circ & \textrm {Calculate the}\hspace {3pt} \hspace {3pt}\textrm {2nd}\hspace {3pt} \hspace {3pt}\textrm {derivative of}\hspace {3pt} \hspace {3pt}\textrm {y}\hspace {3pt} \hspace {3pt}\textrm {with respect to}\hspace {3pt} \hspace {3pt}\textrm {x}\hspace {3pt} \hspace {3pt}\textrm {, using the chain rule}\hspace {3pt} \\ {} & {} & y^{\prime \prime }=\left (\frac {d^{2}}{d t^{2}}y \left (t \right )\right ) {t^{\prime }\left (x \right )}^{2}+t^{\prime \prime }\left (x \right ) \left (\frac {d}{d t}y \left (t \right )\right ) \\ {} & \circ & \textrm {Compute derivative}\hspace {3pt} \\ {} & {} & y^{\prime \prime }=\frac {\frac {d^{2}}{d t^{2}}y \left (t \right )}{x^{2}}-\frac {\frac {d}{d t}y \left (t \right )}{x^{2}} \\ {} & \circ & \textrm {Calculate the}\hspace {3pt} \hspace {3pt}\textrm {3rd}\hspace {3pt} \hspace {3pt}\textrm {derivative of}\hspace {3pt} \hspace {3pt}\textrm {y}\hspace {3pt} \hspace {3pt}\textrm {with respect to}\hspace {3pt} \hspace {3pt}\textrm {x}\hspace {3pt} \hspace {3pt}\textrm {, using the chain rule}\hspace {3pt} \\ {} & {} & y^{\prime \prime \prime }=\left (\frac {d^{3}}{d t^{3}}y \left (t \right )\right ) {t^{\prime }\left (x \right )}^{3}+3 t^{\prime }\left (x \right ) t^{\prime \prime }\left (x \right ) \left (\frac {d^{2}}{d t^{2}}y \left (t \right )\right )+t^{\prime \prime \prime }\left (x \right ) \left (\frac {d}{d t}y \left (t \right )\right ) \\ {} & \circ & \textrm {Compute derivative}\hspace {3pt} \\ {} & {} & y^{\prime \prime \prime }=\frac {\frac {d^{3}}{d t^{3}}y \left (t \right )}{x^{3}}-\frac {3 \left (\frac {d^{2}}{d t^{2}}y \left (t \right )\right )}{x^{3}}+\frac {2 \left (\frac {d}{d t}y \left (t \right )\right )}{x^{3}} \\ & {} & \textrm {Substitute the change of variables back into the ODE}\hspace {3pt} \\ {} & {} & \left (\frac {\frac {d^{3}}{d t^{3}}y \left (t \right )}{x^{3}}-\frac {3 \left (\frac {d^{2}}{d t^{2}}y \left (t \right )\right )}{x^{3}}+\frac {2 \left (\frac {d}{d t}y \left (t \right )\right )}{x^{3}}\right ) x^{2}+3 x \left (\frac {\frac {d^{2}}{d t^{2}}y \left (t \right )}{x^{2}}-\frac {\frac {d}{d t}y \left (t \right )}{x^{2}}\right )-\frac {6 \left (\frac {d}{d t}y \left (t \right )\right )}{x}=0 \\ \bullet & {} & \textrm {Simplify}\hspace {3pt} \\ {} & {} & \frac {\frac {d^{3}}{d t^{3}}y \left (t \right )-7 \frac {d}{d t}y \left (t \right )}{x}=0 \\ \bullet & {} & \textrm {Isolate 3rd derivative}\hspace {3pt} \\ {} & {} & \frac {d^{3}}{d t^{3}}y \left (t \right )=7 \frac {d}{d t}y \left (t \right ) \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y \left (t \right )\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & \frac {d^{3}}{d t^{3}}y \left (t \right )-7 \frac {d}{d t}y \left (t \right )=0 \\ \square & {} & \textrm {Convert linear ODE into a system of first order ODEs}\hspace {3pt} \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{1}\left (t \right ) \\ {} & {} & y_{1}\left (t \right )=y \left (t \right ) \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{2}\left (t \right ) \\ {} & {} & y_{2}\left (t \right )=\frac {d}{d t}y \left (t \right ) \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{3}\left (t \right ) \\ {} & {} & y_{3}\left (t \right )=\frac {d^{2}}{d t^{2}}y \left (t \right ) \\ {} & \circ & \textrm {Isolate for}\hspace {3pt} \frac {d}{d t}y_{3}\left (t \right )\hspace {3pt}\textrm {using original ODE}\hspace {3pt} \\ {} & {} & \frac {d}{d t}y_{3}\left (t \right )=7 y_{2}\left (t \right ) \\ & {} & \textrm {Convert linear ODE into a system of first order ODEs}\hspace {3pt} \\ {} & {} & \left [y_{2}\left (t \right )=\frac {d}{d t}y_{1}\left (t \right ), y_{3}\left (t \right )=\frac {d}{d t}y_{2}\left (t \right ), \frac {d}{d t}y_{3}\left (t \right )=7 y_{2}\left (t \right )\right ] \\ \bullet & {} & \textrm {Define vector}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}\left (t \right )=\left [\begin {array}{c} y_{1}\left (t \right ) \\ y_{2}\left (t \right ) \\ y_{3}\left (t \right ) \end {array}\right ] \\ \bullet & {} & \textrm {System to solve}\hspace {3pt} \\ {} & {} & \frac {d}{d t}{\moverset {\rightarrow }{y}}\left (t \right )=\left [\begin {array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 7 & 0 \end {array}\right ]\cdot {\moverset {\rightarrow }{y}}\left (t \right ) \\ \bullet & {} & \textrm {Define the coefficient matrix}\hspace {3pt} \\ {} & {} & A =\left [\begin {array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 7 & 0 \end {array}\right ] \\ \bullet & {} & \textrm {Rewrite the system as}\hspace {3pt} \\ {} & {} & \frac {d}{d t}{\moverset {\rightarrow }{y}}\left (t \right )=A \cdot {\moverset {\rightarrow }{y}}\left (t \right ) \\ \bullet & {} & \textrm {To solve the system, find the eigenvalues and eigenvectors of}\hspace {3pt} A \\ \bullet & {} & \textrm {Eigenpairs of}\hspace {3pt} A \\ {} & {} & \left [\left [0, \left [\begin {array}{c} 1 \\ 0 \\ 0 \end {array}\right ]\right ], \left [\sqrt {7}, \left [\begin {array}{c} \frac {1}{7} \\ \frac {\sqrt {7}}{7} \\ 1 \end {array}\right ]\right ], \left [-\sqrt {7}, \left [\begin {array}{c} \frac {1}{7} \\ -\frac {\sqrt {7}}{7} \\ 1 \end {array}\right ]\right ]\right ] \\ \bullet & {} & \textrm {Consider eigenpair}\hspace {3pt} \\ {} & {} & \left [0, \left [\begin {array}{c} 1 \\ 0 \\ 0 \end {array}\right ]\right ] \\ \bullet & {} & \textrm {Solution to homogeneous system from eigenpair}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}_{1}=\left [\begin {array}{c} 1 \\ 0 \\ 0 \end {array}\right ] \\ \bullet & {} & \textrm {Consider eigenpair}\hspace {3pt} \\ {} & {} & \left [\sqrt {7}, \left [\begin {array}{c} \frac {1}{7} \\ \frac {\sqrt {7}}{7} \\ 1 \end {array}\right ]\right ] \\ \bullet & {} & \textrm {Solution to homogeneous system from eigenpair}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}_{2}={\mathrm e}^{\sqrt {7}\, t}\cdot \left [\begin {array}{c} \frac {1}{7} \\ \frac {\sqrt {7}}{7} \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {Consider eigenpair}\hspace {3pt} \\ {} & {} & \left [-\sqrt {7}, \left [\begin {array}{c} \frac {1}{7} \\ -\frac {\sqrt {7}}{7} \\ 1 \end {array}\right ]\right ] \\ \bullet & {} & \textrm {Solution to homogeneous system from eigenpair}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}_{3}={\mathrm e}^{-\sqrt {7}\, t}\cdot \left [\begin {array}{c} \frac {1}{7} \\ -\frac {\sqrt {7}}{7} \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {General solution to the system of ODEs}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}=c_{1} {\moverset {\rightarrow }{y}}_{1}+c_{2} {\moverset {\rightarrow }{y}}_{2}+c_{3} {\moverset {\rightarrow }{y}}_{3} \\ \bullet & {} & \textrm {Substitute solutions into the general solution}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}=c_{2} {\mathrm e}^{\sqrt {7}\, t}\cdot \left [\begin {array}{c} \frac {1}{7} \\ \frac {\sqrt {7}}{7} \\ 1 \end {array}\right ]+c_{3} {\mathrm e}^{-\sqrt {7}\, t}\cdot \left [\begin {array}{c} \frac {1}{7} \\ -\frac {\sqrt {7}}{7} \\ 1 \end {array}\right ]+\left [\begin {array}{c} c_{1} \\ 0 \\ 0 \end {array}\right ] \\ \bullet & {} & \textrm {First component of the vector is the solution to the ODE}\hspace {3pt} \\ {} & {} & y \left (t \right )=\frac {c_{2} {\mathrm e}^{\sqrt {7}\, t}}{7}+\frac {c_{3} {\mathrm e}^{-\sqrt {7}\, t}}{7}+c_{1} \\ \bullet & {} & \textrm {Change variables back using}\hspace {3pt} t =\ln \left (x \right ) \\ {} & {} & y=\frac {c_{2} {\mathrm e}^{\sqrt {7}\, \ln \left (x \right )}}{7}+\frac {c_{3} {\mathrm e}^{-\sqrt {7}\, \ln \left (x \right )}}{7}+c_{1} \\ \bullet & {} & \textrm {Simplify}\hspace {3pt} \\ {} & {} & y=\frac {c_{2} x^{\sqrt {7}}}{7}+\frac {c_{3} x^{-\sqrt {7}}}{7}+c_{1} \end {array} \]

Maple trace

`Methods for third order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
<- LODE of Euler type successful`
 

Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

dsolve(x^3*diff(y(x),x$3)+3*x^2*diff(y(x),x$2)-6*x*diff(y(x),x)=0,y(x), singsol=all)
 

\[ y \left (x \right ) = c_{1} +c_{2} x^{\sqrt {7}}+c_{3} x^{-\sqrt {7}} \]

Solution by Mathematica

Time used: 0.056 (sec). Leaf size: 41

DSolve[x^3*y'''[x]+3*x^2*y''[x]-6*x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to -\frac {c_1 x^{-\sqrt {7}}}{\sqrt {7}}+\frac {c_2 x^{\sqrt {7}}}{\sqrt {7}}+c_3 \]