7.7 problem Problem 31

7.7.1 Maple step by step solution

Internal problem ID [2751]
Internal file name [OUTPUT/2243_Sunday_June_05_2022_02_56_05_AM_62395484/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525
Problem number: Problem 31.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type

[[_3rd_order, _with_linear_symmetries]]

\[ \boxed {y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y=9 \,{\mathrm e}^{-x}} \] This is higher order nonhomogeneous ODE. Let the solution be \[ y = y_h + y_p \] Where \(y_h\) is the solution to the homogeneous ODE And \(y_p\) is a particular solution to the nonhomogeneous ODE. \(y_h\) is the solution to \[ y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 0 \] The characteristic equation is \[ \lambda ^{3}-\lambda ^{2}+\lambda -1 = 0 \] The roots of the above equation are \begin {align*} \lambda _1 &= 1\\ \lambda _2 &= i\\ \lambda _3 &= -i \end {align*}

Therefore the homogeneous solution is \[ y_h(x)={\mathrm e}^{x} c_{1} +{\mathrm e}^{-i x} c_{2} +{\mathrm e}^{i x} c_{3} \] The fundamental set of solutions for the homogeneous solution are the following \begin{align*} y_1 &= {\mathrm e}^{x} \\ y_2 &= {\mathrm e}^{-i x} \\ y_3 &= {\mathrm e}^{i x} \\ \end{align*} Now the particular solution to the given ODE is found \[ y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 9 \,{\mathrm e}^{-x} \] The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is \[ 9 \,{\mathrm e}^{-x} \] Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is \[ [\{{\mathrm e}^{-x}\}] \] While the set of the basis functions for the homogeneous solution found earlier is \[ \{{\mathrm e}^{x}, {\mathrm e}^{i x}, {\mathrm e}^{-i x}\} \] Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set. \[ y_p = A_{1} {\mathrm e}^{-x} \] The unknowns \(\{A_{1}\}\) are found by substituting the above trial solution \(y_p\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives \[ -4 A_{1} {\mathrm e}^{-x} = 9 \,{\mathrm e}^{-x} \] Solving for the unknowns by comparing coefficients results in \[ \left [A_{1} = -{\frac {9}{4}}\right ] \] Substituting the above back in the above trial solution \(y_p\), gives the particular solution \[ y_p = -\frac {9 \,{\mathrm e}^{-x}}{4} \] Therefore the general solution is \begin{align*} y &= y_h + y_p \\ &= \left ({\mathrm e}^{x} c_{1} +{\mathrm e}^{-i x} c_{2} +{\mathrm e}^{i x} c_{3}\right ) + \left (-\frac {9 \,{\mathrm e}^{-x}}{4}\right ) \\ \end{align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= {\mathrm e}^{x} c_{1} +{\mathrm e}^{-i x} c_{2} +{\mathrm e}^{i x} c_{3} -\frac {9 \,{\mathrm e}^{-x}}{4} \\ \end{align*}

Verification of solutions

\[ y = {\mathrm e}^{x} c_{1} +{\mathrm e}^{-i x} c_{2} +{\mathrm e}^{i x} c_{3} -\frac {9 \,{\mathrm e}^{-x}}{4} \] Verified OK.

7.7.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime \prime }-\frac {d}{d x}y^{\prime }+y^{\prime }-y=9 \,{\mathrm e}^{-x} \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 3 \\ {} & {} & \frac {d}{d x}y^{\prime \prime } \\ \square & {} & \textrm {Convert linear ODE into a system of first order ODEs}\hspace {3pt} \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{1}\left (x \right ) \\ {} & {} & y_{1}\left (x \right )=y \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{2}\left (x \right ) \\ {} & {} & y_{2}\left (x \right )=y^{\prime } \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{3}\left (x \right ) \\ {} & {} & y_{3}\left (x \right )=\frac {d}{d x}y^{\prime } \\ {} & \circ & \textrm {Isolate for}\hspace {3pt} y_{3}^{\prime }\left (x \right )\hspace {3pt}\textrm {using original ODE}\hspace {3pt} \\ {} & {} & y_{3}^{\prime }\left (x \right )=9 \,{\mathrm e}^{-x}+y_{3}\left (x \right )-y_{2}\left (x \right )+y_{1}\left (x \right ) \\ & {} & \textrm {Convert linear ODE into a system of first order ODEs}\hspace {3pt} \\ {} & {} & \left [y_{2}\left (x \right )=y_{1}^{\prime }\left (x \right ), y_{3}\left (x \right )=y_{2}^{\prime }\left (x \right ), y_{3}^{\prime }\left (x \right )=9 \,{\mathrm e}^{-x}+y_{3}\left (x \right )-y_{2}\left (x \right )+y_{1}\left (x \right )\right ] \\ \bullet & {} & \textrm {Define vector}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}\left (x \right )=\left [\begin {array}{c} y_{1}\left (x \right ) \\ y_{2}\left (x \right ) \\ y_{3}\left (x \right ) \end {array}\right ] \\ \bullet & {} & \textrm {System to solve}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}^{\prime }\left (x \right )=\left [\begin {array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -1 & 1 \end {array}\right ]\cdot {\moverset {\rightarrow }{y}}\left (x \right )+\left [\begin {array}{c} 0 \\ 0 \\ 9 \,{\mathrm e}^{-x} \end {array}\right ] \\ \bullet & {} & \textrm {Define the forcing function}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{f}}\left (x \right )=\left [\begin {array}{c} 0 \\ 0 \\ 9 \,{\mathrm e}^{-x} \end {array}\right ] \\ \bullet & {} & \textrm {Define the coefficient matrix}\hspace {3pt} \\ {} & {} & A =\left [\begin {array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -1 & 1 \end {array}\right ] \\ \bullet & {} & \textrm {Rewrite the system as}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}^{\prime }\left (x \right )=A \cdot {\moverset {\rightarrow }{y}}\left (x \right )+{\moverset {\rightarrow }{f}} \\ \bullet & {} & \textrm {To solve the system, find the eigenvalues and eigenvectors of}\hspace {3pt} A \\ \bullet & {} & \textrm {Eigenpairs of}\hspace {3pt} A \\ {} & {} & \left [\left [1, \left [\begin {array}{c} 1 \\ 1 \\ 1 \end {array}\right ]\right ], \left [\mathrm {-I}, \left [\begin {array}{c} -1 \\ \mathrm {I} \\ 1 \end {array}\right ]\right ], \left [\mathrm {I}, \left [\begin {array}{c} -1 \\ \mathrm {-I} \\ 1 \end {array}\right ]\right ]\right ] \\ \bullet & {} & \textrm {Consider eigenpair}\hspace {3pt} \\ {} & {} & \left [1, \left [\begin {array}{c} 1 \\ 1 \\ 1 \end {array}\right ]\right ] \\ \bullet & {} & \textrm {Solution to homogeneous system from eigenpair}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}_{1}={\mathrm e}^{x}\cdot \left [\begin {array}{c} 1 \\ 1 \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {Consider complex eigenpair, complex conjugate eigenvalue can be ignored}\hspace {3pt} \\ {} & {} & \left [\mathrm {-I}, \left [\begin {array}{c} -1 \\ \mathrm {I} \\ 1 \end {array}\right ]\right ] \\ \bullet & {} & \textrm {Solution from eigenpair}\hspace {3pt} \\ {} & {} & {\mathrm e}^{\mathrm {-I} x}\cdot \left [\begin {array}{c} -1 \\ \mathrm {I} \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {Use Euler identity to write solution in terms of}\hspace {3pt} \sin \hspace {3pt}\textrm {and}\hspace {3pt} \cos \\ {} & {} & \left (\cos \left (x \right )-\mathrm {I} \sin \left (x \right )\right )\cdot \left [\begin {array}{c} -1 \\ \mathrm {I} \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {Simplify expression}\hspace {3pt} \\ {} & {} & \left [\begin {array}{c} -\cos \left (x \right )+\mathrm {I} \sin \left (x \right ) \\ \mathrm {I} \left (\cos \left (x \right )-\mathrm {I} \sin \left (x \right )\right ) \\ \cos \left (x \right )-\mathrm {I} \sin \left (x \right ) \end {array}\right ] \\ \bullet & {} & \textrm {Both real and imaginary parts are solutions to the homogeneous system}\hspace {3pt} \\ {} & {} & \left [{\moverset {\rightarrow }{y}}_{2}\left (x \right )=\left [\begin {array}{c} -\cos \left (x \right ) \\ \sin \left (x \right ) \\ \cos \left (x \right ) \end {array}\right ], {\moverset {\rightarrow }{y}}_{3}\left (x \right )=\left [\begin {array}{c} \sin \left (x \right ) \\ \cos \left (x \right ) \\ -\sin \left (x \right ) \end {array}\right ]\right ] \\ \bullet & {} & \textrm {General solution of the system of ODEs can be written in terms of the particular solution}\hspace {3pt} {\moverset {\rightarrow }{y}}_{p}\left (x \right ) \\ {} & {} & {\moverset {\rightarrow }{y}}\left (x \right )=c_{1} {\moverset {\rightarrow }{y}}_{1}+c_{2} {\moverset {\rightarrow }{y}}_{2}\left (x \right )+c_{3} {\moverset {\rightarrow }{y}}_{3}\left (x \right )+{\moverset {\rightarrow }{y}}_{p}\left (x \right ) \\ \square & {} & \textrm {Fundamental matrix}\hspace {3pt} \\ {} & \circ & \textrm {Let}\hspace {3pt} \phi \left (x \right )\hspace {3pt}\textrm {be the matrix whose columns are the independent solutions of the homogeneous system.}\hspace {3pt} \\ {} & {} & \phi \left (x \right )=\left [\begin {array}{ccc} {\mathrm e}^{x} & -\cos \left (x \right ) & \sin \left (x \right ) \\ {\mathrm e}^{x} & \sin \left (x \right ) & \cos \left (x \right ) \\ {\mathrm e}^{x} & \cos \left (x \right ) & -\sin \left (x \right ) \end {array}\right ] \\ {} & \circ & \textrm {The fundamental matrix,}\hspace {3pt} \Phi \left (x \right )\hspace {3pt}\textrm {is a normalized version of}\hspace {3pt} \phi \left (x \right )\hspace {3pt}\textrm {satisfying}\hspace {3pt} \Phi \left (0\right )=I \hspace {3pt}\textrm {where}\hspace {3pt} I \hspace {3pt}\textrm {is the identity matrix}\hspace {3pt} \\ {} & {} & \Phi \left (x \right )=\phi \left (x \right )\cdot \phi \left (0\right )^{-1} \\ {} & \circ & \textrm {Substitute the value of}\hspace {3pt} \phi \left (x \right )\hspace {3pt}\textrm {and}\hspace {3pt} \phi \left (0\right ) \\ {} & {} & \Phi \left (x \right )=\left [\begin {array}{ccc} {\mathrm e}^{x} & -\cos \left (x \right ) & \sin \left (x \right ) \\ {\mathrm e}^{x} & \sin \left (x \right ) & \cos \left (x \right ) \\ {\mathrm e}^{x} & \cos \left (x \right ) & -\sin \left (x \right ) \end {array}\right ]\cdot \left [\begin {array}{ccc} 1 & -1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end {array}\right ]^{-1} \\ {} & \circ & \textrm {Evaluate and simplify to get the fundamental matrix}\hspace {3pt} \\ {} & {} & \Phi \left (x \right )=\left [\begin {array}{ccc} \frac {{\mathrm e}^{x}}{2}+\frac {\cos \left (x \right )}{2}-\frac {\sin \left (x \right )}{2} & \sin \left (x \right ) & \frac {{\mathrm e}^{x}}{2}-\frac {\cos \left (x \right )}{2}-\frac {\sin \left (x \right )}{2} \\ \frac {{\mathrm e}^{x}}{2}-\frac {\cos \left (x \right )}{2}-\frac {\sin \left (x \right )}{2} & \cos \left (x \right ) & \frac {{\mathrm e}^{x}}{2}+\frac {\sin \left (x \right )}{2}-\frac {\cos \left (x \right )}{2} \\ \frac {{\mathrm e}^{x}}{2}+\frac {\sin \left (x \right )}{2}-\frac {\cos \left (x \right )}{2} & -\sin \left (x \right ) & \frac {{\mathrm e}^{x}}{2}+\frac {\cos \left (x \right )}{2}+\frac {\sin \left (x \right )}{2} \end {array}\right ] \\ \square & {} & \textrm {Find a particular solution of the system of ODEs using variation of parameters}\hspace {3pt} \\ {} & \circ & \textrm {Let the particular solution be the fundamental matrix multiplied by}\hspace {3pt} {\moverset {\rightarrow }{v}}\left (x \right )\hspace {3pt}\textrm {and solve for}\hspace {3pt} {\moverset {\rightarrow }{v}}\left (x \right ) \\ {} & {} & {\moverset {\rightarrow }{y}}_{p}\left (x \right )=\Phi \left (x \right )\cdot {\moverset {\rightarrow }{v}}\left (x \right ) \\ {} & \circ & \textrm {Take the derivative of the particular solution}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}_{p}^{\prime }\left (x \right )=\Phi ^{\prime }\left (x \right )\cdot {\moverset {\rightarrow }{v}}\left (x \right )+\Phi \left (x \right )\cdot {\moverset {\rightarrow }{v}}^{\prime }\left (x \right ) \\ {} & \circ & \textrm {Substitute particular solution and its derivative into the system of ODEs}\hspace {3pt} \\ {} & {} & \Phi ^{\prime }\left (x \right )\cdot {\moverset {\rightarrow }{v}}\left (x \right )+\Phi \left (x \right )\cdot {\moverset {\rightarrow }{v}}^{\prime }\left (x \right )=A \cdot \Phi \left (x \right )\cdot {\moverset {\rightarrow }{v}}\left (x \right )+{\moverset {\rightarrow }{f}}\left (x \right ) \\ {} & \circ & \textrm {The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system}\hspace {3pt} \\ {} & {} & A \cdot \Phi \left (x \right )\cdot {\moverset {\rightarrow }{v}}\left (x \right )+\Phi \left (x \right )\cdot {\moverset {\rightarrow }{v}}^{\prime }\left (x \right )=A \cdot \Phi \left (x \right )\cdot {\moverset {\rightarrow }{v}}\left (x \right )+{\moverset {\rightarrow }{f}}\left (x \right ) \\ {} & \circ & \textrm {Cancel like terms}\hspace {3pt} \\ {} & {} & \Phi \left (x \right )\cdot {\moverset {\rightarrow }{v}}^{\prime }\left (x \right )={\moverset {\rightarrow }{f}}\left (x \right ) \\ {} & \circ & \textrm {Multiply by the inverse of the fundamental matrix}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{v}}^{\prime }\left (x \right )=\Phi \left (x \right )^{-1}\cdot {\moverset {\rightarrow }{f}}\left (x \right ) \\ {} & \circ & \textrm {Integrate to solve for}\hspace {3pt} {\moverset {\rightarrow }{v}}\left (x \right ) \\ {} & {} & {\moverset {\rightarrow }{v}}\left (x \right )=\int _{0}^{x}\Phi \left (s \right )^{-1}\cdot {\moverset {\rightarrow }{f}}\left (s \right )d s \\ {} & \circ & \textrm {Plug}\hspace {3pt} {\moverset {\rightarrow }{v}}\left (x \right )\hspace {3pt}\textrm {into the equation for the particular solution}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}_{p}\left (x \right )=\Phi \left (x \right )\cdot \left (\int _{0}^{x}\Phi \left (s \right )^{-1}\cdot {\moverset {\rightarrow }{f}}\left (s \right )d s \right ) \\ {} & \circ & \textrm {Plug in the fundamental matrix and the forcing function and compute}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}_{p}\left (x \right )=\left [\begin {array}{c} \frac {9 \,{\mathrm e}^{x}}{4}-\frac {9 \sin \left (x \right )}{2}-\frac {9 \,{\mathrm e}^{-x}}{4} \\ \frac {9 \,{\mathrm e}^{x}}{4}-\frac {9 \cos \left (x \right )}{2}+\frac {9 \,{\mathrm e}^{-x}}{4} \\ \frac {9 \,{\mathrm e}^{x}}{4}+\frac {9 \sin \left (x \right )}{2}-\frac {9 \,{\mathrm e}^{-x}}{4} \end {array}\right ] \\ \bullet & {} & \textrm {Plug particular solution back into general solution}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}\left (x \right )=c_{1} {\moverset {\rightarrow }{y}}_{1}+c_{2} {\moverset {\rightarrow }{y}}_{2}\left (x \right )+c_{3} {\moverset {\rightarrow }{y}}_{3}\left (x \right )+\left [\begin {array}{c} \frac {9 \,{\mathrm e}^{x}}{4}-\frac {9 \sin \left (x \right )}{2}-\frac {9 \,{\mathrm e}^{-x}}{4} \\ \frac {9 \,{\mathrm e}^{x}}{4}-\frac {9 \cos \left (x \right )}{2}+\frac {9 \,{\mathrm e}^{-x}}{4} \\ \frac {9 \,{\mathrm e}^{x}}{4}+\frac {9 \sin \left (x \right )}{2}-\frac {9 \,{\mathrm e}^{-x}}{4} \end {array}\right ] \\ \bullet & {} & \textrm {First component of the vector is the solution to the ODE}\hspace {3pt} \\ {} & {} & y={\mathrm e}^{x} c_{1} +\frac {9 \,{\mathrm e}^{x}}{4}-\frac {9 \sin \left (x \right )}{2}-\frac {9 \,{\mathrm e}^{-x}}{4}+c_{3} \sin \left (x \right )-c_{2} \cos \left (x \right ) \end {array} \]

Maple trace

`Methods for third order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying high order exact linear fully integrable 
trying differential order: 3; linear nonhomogeneous with symmetry [0,1] 
trying high order linear exact nonhomogeneous 
trying differential order: 3; missing the dependent variable 
checking if the LODE has constant coefficients 
<- constant coefficients successful`
 

Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(x),x$3)-diff(y(x),x$2)+diff(y(x),x)-y(x)=9*exp(-x),y(x), singsol=all)
 

\[ y \left (x \right ) = -\frac {9 \,{\mathrm e}^{-x}}{4}+\cos \left (x \right ) c_{1} +c_{2} {\mathrm e}^{x}+c_{3} \sin \left (x \right ) \]

Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 31

DSolve[y'''[x]-y''[x]+y'[x]-y[x]==9*Exp[-x],y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to -\frac {9 e^{-x}}{4}+c_3 e^x+c_1 \cos (x)+c_2 \sin (x) \]