13.8 problem Problem 8

13.8.1 Existence and uniqueness analysis
13.8.2 Maple step by step solution

Internal problem ID [2846]
Internal file name [OUTPUT/2338_Sunday_June_05_2022_02_59_45_AM_22223891/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689
Problem number: Problem 8.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

[[_2nd_order, _missing_x]]

\[ \boxed {y^{\prime \prime }+y^{\prime }-2 y=0} \] With initial conditions \begin {align*} [y \left (0\right ) = 1, y^{\prime }\left (0\right ) = 4] \end {align*}

13.8.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as \begin {align*} y^{\prime \prime } + p(t)y^{\prime } + q(t) y &= F \end {align*}

Where here \begin {align*} p(t) &=1\\ q(t) &=-2\\ F &=0 \end {align*}

Hence the ode is \begin {align*} y^{\prime \prime }+y^{\prime }-2 y = 0 \end {align*}

The domain of \(p(t)=1\) is \[ \{-\infty

Solving using the Laplace transform method. Let \begin {align*} \mathcal {L}\left (y\right ) =Y(s) \end {align*}

Taking the Laplace transform of the ode and using the relations that \begin {align*} \mathcal {L}\left (y^{\prime }\right ) &= s Y(s) - y \left (0\right )\\ \mathcal {L}\left (y^{\prime \prime }\right ) &= s^2 Y(s) - y'(0) - s y \left (0\right ) \end {align*}

The given ode now becomes an algebraic equation in the Laplace domain \begin {align*} s^{2} Y \left (s \right )-y^{\prime }\left (0\right )-s y \left (0\right )+s Y \left (s \right )-y \left (0\right )-2 Y \left (s \right ) = 0\tag {1} \end {align*}

But the initial conditions are \begin {align*} y \left (0\right )&=1\\ y'(0) &=4 \end {align*}

Substituting these initial conditions in above in Eq (1) gives \begin {align*} s^{2} Y \left (s \right )-5-s +s Y \left (s \right )-2 Y \left (s \right ) = 0 \end {align*}

Solving the above equation for \(Y(s)\) results in \begin {align*} Y(s) = \frac {s +5}{s^{2}+s -2} \end {align*}

Applying partial fractions decomposition results in \[ Y(s)= \frac {2}{s -1}-\frac {1}{s +2} \] The inverse Laplace of each term above is now found, which gives \begin {align*} \mathcal {L}^{-1}\left (\frac {2}{s -1}\right ) &= 2 \,{\mathrm e}^{t}\\ \mathcal {L}^{-1}\left (-\frac {1}{s +2}\right ) &= -{\mathrm e}^{-2 t} \end {align*}

Adding the above results and simplifying gives \[ y=-{\mathrm e}^{-2 t}+2 \,{\mathrm e}^{t} \] Simplifying the solution gives \[ y = \left (2 \,{\mathrm e}^{3 t}-1\right ) {\mathrm e}^{-2 t} \]

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= \left (2 \,{\mathrm e}^{3 t}-1\right ) {\mathrm e}^{-2 t} \\ \end{align*}

(a) Solution plot

(b) Slope field plot

Verification of solutions

\[ y = \left (2 \,{\mathrm e}^{3 t}-1\right ) {\mathrm e}^{-2 t} \] Verified OK.

13.8.2 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left [y^{\prime \prime }+y^{\prime }-2 y=0, y \left (0\right )=1, y^{\prime }{\raise{-0.36em}{\Big |}}{\mstack {}{_{\left \{t \hiderel {=}0\right \}}}}=4\right ] \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & y^{\prime \prime } \\ \bullet & {} & \textrm {Characteristic polynomial of ODE}\hspace {3pt} \\ {} & {} & r^{2}+r -2=0 \\ \bullet & {} & \textrm {Factor the characteristic polynomial}\hspace {3pt} \\ {} & {} & \left (r +2\right ) \left (r -1\right )=0 \\ \bullet & {} & \textrm {Roots of the characteristic polynomial}\hspace {3pt} \\ {} & {} & r =\left (-2, 1\right ) \\ \bullet & {} & \textrm {1st solution of the ODE}\hspace {3pt} \\ {} & {} & y_{1}\left (t \right )={\mathrm e}^{-2 t} \\ \bullet & {} & \textrm {2nd solution of the ODE}\hspace {3pt} \\ {} & {} & y_{2}\left (t \right )={\mathrm e}^{t} \\ \bullet & {} & \textrm {General solution of the ODE}\hspace {3pt} \\ {} & {} & y=c_{1} y_{1}\left (t \right )+c_{2} y_{2}\left (t \right ) \\ \bullet & {} & \textrm {Substitute in solutions}\hspace {3pt} \\ {} & {} & y=c_{1} {\mathrm e}^{-2 t}+c_{2} {\mathrm e}^{t} \\ \square & {} & \textrm {Check validity of solution}\hspace {3pt} y=c_{1} {\mathrm e}^{-2 t}+c_{2} {\mathrm e}^{t} \\ {} & \circ & \textrm {Use initial condition}\hspace {3pt} y \left (0\right )=1 \\ {} & {} & 1=c_{1} +c_{2} \\ {} & \circ & \textrm {Compute derivative of the solution}\hspace {3pt} \\ {} & {} & y^{\prime }=-2 c_{1} {\mathrm e}^{-2 t}+c_{2} {\mathrm e}^{t} \\ {} & \circ & \textrm {Use the initial condition}\hspace {3pt} y^{\prime }{\raise{-0.36em}{\Big |}}{\mstack {}{_{\left \{t \hiderel {=}0\right \}}}}=4 \\ {} & {} & 4=-2 c_{1} +c_{2} \\ {} & \circ & \textrm {Solve for}\hspace {3pt} c_{1} \hspace {3pt}\textrm {and}\hspace {3pt} c_{2} \\ {} & {} & \left \{c_{1} =-1, c_{2} =2\right \} \\ {} & \circ & \textrm {Substitute constant values into general solution and simplify}\hspace {3pt} \\ {} & {} & y=\left (2 \,{\mathrm e}^{3 t}-1\right ) {\mathrm e}^{-2 t} \\ \bullet & {} & \textrm {Solution to the IVP}\hspace {3pt} \\ {} & {} & y=\left (2 \,{\mathrm e}^{3 t}-1\right ) {\mathrm e}^{-2 t} \end {array} \]

Maple trace

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
<- constant coefficients successful`
 

Solution by Maple

Time used: 1.75 (sec). Leaf size: 15

dsolve([diff(y(t),t$2)+diff(y(t),t)-2*y(t)=0,y(0) = 1, D(y)(0) = 4],y(t), singsol=all)
 

\[ y \left (t \right ) = \left (2 \,{\mathrm e}^{3 t}-1\right ) {\mathrm e}^{-2 t} \]

Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 18

DSolve[{y''[t]+y'[t]-2*y[t]==0,{y[0]==1,y'[0]==4}},y[t],t,IncludeSingularSolutions -> True]
 

\[ y(t)\to 2 e^t-e^{-2 t} \]