17.15 problem 16

17.15.1 Maple step by step solution

Internal problem ID [2931]
Internal file name [OUTPUT/2423_Sunday_June_05_2022_03_09_07_AM_220765/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758
Problem number: 16.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

\[ \boxed {x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }-\left (x +5\right ) y=0} \] With the expansion point for the power series method at \(x = 0\).

The type of the expansion point is first determined. This is done on the homogeneous part of the ODE. \[ x^{2} y^{\prime \prime }+\left (-x^{2}+x \right ) y^{\prime }+\left (-x -5\right ) y = 0 \] The following is summary of singularities for the above ode. Writing the ode as \begin {align*} y^{\prime \prime }+p(x) y^{\prime } + q(x) y &=0 \end {align*}

Where \begin {align*} p(x) &= -\frac {x -1}{x}\\ q(x) &= -\frac {x +5}{x^{2}}\\ \end {align*}

Table 183: Table \(p(x),q(x)\) singularites.
\(p(x)=-\frac {x -1}{x}\)
singularity type
\(x = 0\) \(\text {``regular''}\)
\(q(x)=-\frac {x +5}{x^{2}}\)
singularity type
\(x = 0\) \(\text {``regular''}\)

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : \([0]\)

Irregular singular points : \([\infty ]\)

Since \(x = 0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be \[ x^{2} y^{\prime \prime }+\left (-x^{2}+x \right ) y^{\prime }+\left (-x -5\right ) y = 0 \] Let the solution be represented as Frobenius power series of the form \[ y = \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r} \] Then \begin{align*} y^{\prime } &= \moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} x^{n +r -1} \\ y^{\prime \prime } &= \moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) \left (n +r -1\right ) a_{n} x^{n +r -2} \\ \end{align*} Substituting the above back into the ode gives \begin{equation} \tag{1} x^{2} \left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) \left (n +r -1\right ) a_{n} x^{n +r -2}\right )+\left (-x^{2}+x \right ) \left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} x^{n +r -1}\right )+\left (-x -5\right ) \left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r}\right ) = 0 \end{equation} Which simplifies to \begin{equation} \tag{2A} \left (\moverset {\infty }{\munderset {n =0}{\sum }}x^{n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )\right )+\moverset {\infty }{\munderset {n =0}{\sum }}\left (-x^{1+n +r} a_{n} \left (n +r \right )\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}x^{n +r} a_{n} \left (n +r \right )\right )+\moverset {\infty }{\munderset {n =0}{\sum }}\left (-x^{1+n +r} a_{n}\right )+\moverset {\infty }{\munderset {n =0}{\sum }}\left (-5 a_{n} x^{n +r}\right ) = 0 \end{equation} The next step is to make all powers of \(x\) be \(n +r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n +r}\) and adjusting the power and the corresponding index gives \begin{align*} \moverset {\infty }{\munderset {n =0}{\sum }}\left (-x^{1+n +r} a_{n} \left (n +r \right )\right ) &= \moverset {\infty }{\munderset {n =1}{\sum }}\left (-a_{n -1} \left (n +r -1\right ) x^{n +r}\right ) \\ \moverset {\infty }{\munderset {n =0}{\sum }}\left (-x^{1+n +r} a_{n}\right ) &= \moverset {\infty }{\munderset {n =1}{\sum }}\left (-a_{n -1} x^{n +r}\right ) \\ \end{align*} Substituting all the above in Eq (2A) gives the following equation where now all powers of \(x\) are the same and equal to \(n +r\). \begin{equation} \tag{2B} \left (\moverset {\infty }{\munderset {n =0}{\sum }}x^{n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )\right )+\moverset {\infty }{\munderset {n =1}{\sum }}\left (-a_{n -1} \left (n +r -1\right ) x^{n +r}\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}x^{n +r} a_{n} \left (n +r \right )\right )+\moverset {\infty }{\munderset {n =1}{\sum }}\left (-a_{n -1} x^{n +r}\right )+\moverset {\infty }{\munderset {n =0}{\sum }}\left (-5 a_{n} x^{n +r}\right ) = 0 \end{equation} The indicial equation is obtained from \(n = 0\). From Eq (2B) this gives \[ x^{n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )+x^{n +r} a_{n} \left (n +r \right )-5 a_{n} x^{n +r} = 0 \] When \(n = 0\) the above becomes \[ x^{r} a_{0} r \left (-1+r \right )+x^{r} a_{0} r -5 a_{0} x^{r} = 0 \] Or \[ \left (x^{r} r \left (-1+r \right )+x^{r} r -5 x^{r}\right ) a_{0} = 0 \] Since \(a_{0}\neq 0\) then the above simplifies to \[ \left (r^{2}-5\right ) x^{r} = 0 \] Since the above is true for all \(x\) then the indicial equation becomes \[ r^{2}-5 = 0 \] Solving for \(r\) gives the roots of the indicial equation as \begin {align*} r_1 &= \sqrt {5}\\ r_2 &= -\sqrt {5} \end {align*}

Since \(a_{0}\neq 0\) then the indicial equation becomes \[ \left (r^{2}-5\right ) x^{r} = 0 \] Solving for \(r\) gives the roots of the indicial equation as \(\left [\sqrt {5}, -\sqrt {5}\right ]\).

Since \(r_1 - r_2 = 2 \sqrt {5}\) is not an integer, then we can construct two linearly independent solutions \begin {align*} y_{1}\left (x \right ) &= x^{r_{1}} \left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n}\right )\\ y_{2}\left (x \right ) &= x^{r_{2}} \left (\moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n}\right ) \end {align*}

Or \begin {align*} y_{1}\left (x \right ) &= \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +\sqrt {5}}\\ y_{2}\left (x \right ) &= \moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n -\sqrt {5}} \end {align*}

We start by finding \(y_{1}\left (x \right )\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n = 0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0} = 1\). For \(1\le n\) the recursive equation is \begin{equation} \tag{3} a_{n} \left (n +r \right ) \left (n +r -1\right )-a_{n -1} \left (n +r -1\right )+a_{n} \left (n +r \right )-a_{n -1}-5 a_{n} = 0 \end{equation} Solving for \(a_{n}\) from recursive equation (4) gives \[ a_{n} = \frac {a_{n -1} \left (n +r \right )}{n^{2}+2 n r +r^{2}-5}\tag {4} \] Which for the root \(r = \sqrt {5}\) becomes \[ a_{n} = \frac {a_{n -1} \left (n +\sqrt {5}\right )}{n \left (2 \sqrt {5}+n \right )}\tag {5} \] At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r = \sqrt {5}\) and after as more terms are found using the above recursive equation.

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)

For \(n = 1\), using the above recursive equation gives \[ a_{1}=\frac {1+r}{r^{2}+2 r -4} \] Which for the root \(r = \sqrt {5}\) becomes \[ a_{1}=\frac {\sqrt {5}+1}{1+2 \sqrt {5}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(\frac {1+r}{r^{2}+2 r -4}\) \(\frac {\sqrt {5}+1}{1+2 \sqrt {5}}\)

For \(n = 2\), using the above recursive equation gives \[ a_{2}=\frac {\left (1+r \right ) \left (2+r \right )}{\left (r^{2}+2 r -4\right ) \left (r^{2}+4 r -1\right )} \] Which for the root \(r = \sqrt {5}\) becomes \[ a_{2}=\frac {2+\sqrt {5}}{4+8 \sqrt {5}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(\frac {1+r}{r^{2}+2 r -4}\) \(\frac {\sqrt {5}+1}{1+2 \sqrt {5}}\)
\(a_{2}\) \(\frac {\left (1+r \right ) \left (2+r \right )}{\left (r^{2}+2 r -4\right ) \left (r^{2}+4 r -1\right )}\) \(\frac {2+\sqrt {5}}{4+8 \sqrt {5}}\)

For \(n = 3\), using the above recursive equation gives \[ a_{3}=\frac {\left (1+r \right ) \left (2+r \right ) \left (3+r \right )}{\left (r^{2}+2 r -4\right ) \left (r^{2}+4 r -1\right ) \left (r^{2}+6 r +4\right )} \] Which for the root \(r = \sqrt {5}\) becomes \[ a_{3}=\frac {\left (2+\sqrt {5}\right ) \left (\sqrt {5}+3\right )}{276+96 \sqrt {5}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(\frac {1+r}{r^{2}+2 r -4}\) \(\frac {\sqrt {5}+1}{1+2 \sqrt {5}}\)
\(a_{2}\) \(\frac {\left (1+r \right ) \left (2+r \right )}{\left (r^{2}+2 r -4\right ) \left (r^{2}+4 r -1\right )}\) \(\frac {2+\sqrt {5}}{4+8 \sqrt {5}}\)
\(a_{3}\) \(\frac {\left (1+r \right ) \left (2+r \right ) \left (3+r \right )}{\left (r^{2}+2 r -4\right ) \left (r^{2}+4 r -1\right ) \left (r^{2}+6 r +4\right )}\) \(\frac {\left (2+\sqrt {5}\right ) \left (\sqrt {5}+3\right )}{276+96 \sqrt {5}}\)

For \(n = 4\), using the above recursive equation gives \[ a_{4}=\frac {\left (1+r \right ) \left (2+r \right ) \left (3+r \right ) \left (4+r \right )}{\left (r^{2}+2 r -4\right ) \left (r^{2}+4 r -1\right ) \left (r^{2}+6 r +4\right ) \left (r^{2}+8 r +11\right )} \] Which for the root \(r = \sqrt {5}\) becomes \[ a_{4}=\frac {\left (4+\sqrt {5}\right ) \left (\sqrt {5}+3\right )}{2208+768 \sqrt {5}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(\frac {1+r}{r^{2}+2 r -4}\) \(\frac {\sqrt {5}+1}{1+2 \sqrt {5}}\)
\(a_{2}\) \(\frac {\left (1+r \right ) \left (2+r \right )}{\left (r^{2}+2 r -4\right ) \left (r^{2}+4 r -1\right )}\) \(\frac {2+\sqrt {5}}{4+8 \sqrt {5}}\)
\(a_{3}\) \(\frac {\left (1+r \right ) \left (2+r \right ) \left (3+r \right )}{\left (r^{2}+2 r -4\right ) \left (r^{2}+4 r -1\right ) \left (r^{2}+6 r +4\right )}\) \(\frac {\left (2+\sqrt {5}\right ) \left (\sqrt {5}+3\right )}{276+96 \sqrt {5}}\)
\(a_{4}\) \(\frac {\left (1+r \right ) \left (2+r \right ) \left (3+r \right ) \left (4+r \right )}{\left (r^{2}+2 r -4\right ) \left (r^{2}+4 r -1\right ) \left (r^{2}+6 r +4\right ) \left (r^{2}+8 r +11\right )}\) \(\frac {\left (4+\sqrt {5}\right ) \left (\sqrt {5}+3\right )}{2208+768 \sqrt {5}}\)

For \(n = 5\), using the above recursive equation gives \[ a_{5}=\frac {\left (1+r \right ) \left (2+r \right ) \left (3+r \right ) \left (4+r \right ) \left (5+r \right )}{\left (r^{2}+2 r -4\right ) \left (r^{2}+4 r -1\right ) \left (r^{2}+6 r +4\right ) \left (r^{2}+8 r +11\right ) \left (r^{2}+10 r +20\right )} \] Which for the root \(r = \sqrt {5}\) becomes \[ a_{5}=\frac {\left (\sqrt {5}+3\right ) \left (4+\sqrt {5}\right ) \left (5+\sqrt {5}\right )}{41280 \sqrt {5}+93600} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(\frac {1+r}{r^{2}+2 r -4}\) \(\frac {\sqrt {5}+1}{1+2 \sqrt {5}}\)
\(a_{2}\) \(\frac {\left (1+r \right ) \left (2+r \right )}{\left (r^{2}+2 r -4\right ) \left (r^{2}+4 r -1\right )}\) \(\frac {2+\sqrt {5}}{4+8 \sqrt {5}}\)
\(a_{3}\) \(\frac {\left (1+r \right ) \left (2+r \right ) \left (3+r \right )}{\left (r^{2}+2 r -4\right ) \left (r^{2}+4 r -1\right ) \left (r^{2}+6 r +4\right )}\) \(\frac {\left (2+\sqrt {5}\right ) \left (\sqrt {5}+3\right )}{276+96 \sqrt {5}}\)
\(a_{4}\) \(\frac {\left (1+r \right ) \left (2+r \right ) \left (3+r \right ) \left (4+r \right )}{\left (r^{2}+2 r -4\right ) \left (r^{2}+4 r -1\right ) \left (r^{2}+6 r +4\right ) \left (r^{2}+8 r +11\right )}\) \(\frac {\left (4+\sqrt {5}\right ) \left (\sqrt {5}+3\right )}{2208+768 \sqrt {5}}\)
\(a_{5}\) \(\frac {\left (1+r \right ) \left (2+r \right ) \left (3+r \right ) \left (4+r \right ) \left (5+r \right )}{\left (r^{2}+2 r -4\right ) \left (r^{2}+4 r -1\right ) \left (r^{2}+6 r +4\right ) \left (r^{2}+8 r +11\right ) \left (r^{2}+10 r +20\right )}\) \(\frac {\left (\sqrt {5}+3\right ) \left (4+\sqrt {5}\right ) \left (5+\sqrt {5}\right )}{41280 \sqrt {5}+93600}\)

Using the above table, then the solution \(y_{1}\left (x \right )\) is \begin {align*} y_{1}\left (x \right )&= x^{\sqrt {5}} \left (a_{0}+a_{1} x +a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}\dots \right ) \\ &= x^{\sqrt {5}} \left (1+\frac {\left (\sqrt {5}+1\right ) x}{1+2 \sqrt {5}}+\frac {\left (2+\sqrt {5}\right ) x^{2}}{4+8 \sqrt {5}}+\frac {\left (2+\sqrt {5}\right ) \left (\sqrt {5}+3\right ) x^{3}}{276+96 \sqrt {5}}+\frac {\left (4+\sqrt {5}\right ) \left (\sqrt {5}+3\right ) x^{4}}{2208+768 \sqrt {5}}+\frac {\left (\sqrt {5}+3\right ) \left (4+\sqrt {5}\right ) \left (5+\sqrt {5}\right ) x^{5}}{41280 \sqrt {5}+93600}+O\left (x^{6}\right )\right ) \end {align*}

Now the second solution \(y_{2}\left (x \right )\) is found. Eq (2B) derived above is now used to find all \(b_{n}\) coefficients. The case \(n = 0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0} = 1\). For \(1\le n\) the recursive equation is \begin{equation} \tag{3} b_{n} \left (n +r \right ) \left (n +r -1\right )-b_{n -1} \left (n +r -1\right )+b_{n} \left (n +r \right )-b_{n -1}-5 b_{n} = 0 \end{equation} Solving for \(b_{n}\) from recursive equation (4) gives \[ b_{n} = \frac {b_{n -1} \left (n +r \right )}{n^{2}+2 n r +r^{2}-5}\tag {4} \] Which for the root \(r = -\sqrt {5}\) becomes \[ b_{n} = \frac {b_{n -1} \left (-n +\sqrt {5}\right )}{n \left (2 \sqrt {5}-n \right )}\tag {5} \] At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r = -\sqrt {5}\) and after as more terms are found using the above recursive equation.

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)

For \(n = 1\), using the above recursive equation gives \[ b_{1}=\frac {1+r}{r^{2}+2 r -4} \] Which for the root \(r = -\sqrt {5}\) becomes \[ b_{1}=\frac {\sqrt {5}-1}{-1+2 \sqrt {5}} \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(\frac {1+r}{r^{2}+2 r -4}\) \(\frac {\sqrt {5}-1}{-1+2 \sqrt {5}}\)

For \(n = 2\), using the above recursive equation gives \[ b_{2}=\frac {\left (1+r \right ) \left (2+r \right )}{\left (r^{2}+2 r -4\right ) \left (r^{2}+4 r -1\right )} \] Which for the root \(r = -\sqrt {5}\) becomes \[ b_{2}=\frac {-2+\sqrt {5}}{-4+8 \sqrt {5}} \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(\frac {1+r}{r^{2}+2 r -4}\) \(\frac {\sqrt {5}-1}{-1+2 \sqrt {5}}\)
\(b_{2}\) \(\frac {\left (1+r \right ) \left (2+r \right )}{\left (r^{2}+2 r -4\right ) \left (r^{2}+4 r -1\right )}\) \(\frac {-2+\sqrt {5}}{-4+8 \sqrt {5}}\)

For \(n = 3\), using the above recursive equation gives \[ b_{3}=\frac {\left (1+r \right ) \left (2+r \right ) \left (3+r \right )}{\left (r^{2}+2 r -4\right ) \left (r^{2}+4 r -1\right ) \left (r^{2}+6 r +4\right )} \] Which for the root \(r = -\sqrt {5}\) becomes \[ b_{3}=\frac {\left (\sqrt {5}-3\right ) \left (-2+\sqrt {5}\right )}{276-96 \sqrt {5}} \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(\frac {1+r}{r^{2}+2 r -4}\) \(\frac {\sqrt {5}-1}{-1+2 \sqrt {5}}\)
\(b_{2}\) \(\frac {\left (1+r \right ) \left (2+r \right )}{\left (r^{2}+2 r -4\right ) \left (r^{2}+4 r -1\right )}\) \(\frac {-2+\sqrt {5}}{-4+8 \sqrt {5}}\)
\(b_{3}\) \(\frac {\left (1+r \right ) \left (2+r \right ) \left (3+r \right )}{\left (r^{2}+2 r -4\right ) \left (r^{2}+4 r -1\right ) \left (r^{2}+6 r +4\right )}\) \(\frac {\left (\sqrt {5}-3\right ) \left (-2+\sqrt {5}\right )}{276-96 \sqrt {5}}\)

For \(n = 4\), using the above recursive equation gives \[ b_{4}=\frac {\left (1+r \right ) \left (2+r \right ) \left (3+r \right ) \left (4+r \right )}{\left (r^{2}+2 r -4\right ) \left (r^{2}+4 r -1\right ) \left (r^{2}+6 r +4\right ) \left (r^{2}+8 r +11\right )} \] Which for the root \(r = -\sqrt {5}\) becomes \[ b_{4}=\frac {\left (\sqrt {5}-3\right ) \left (-4+\sqrt {5}\right )}{2208-768 \sqrt {5}} \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(\frac {1+r}{r^{2}+2 r -4}\) \(\frac {\sqrt {5}-1}{-1+2 \sqrt {5}}\)
\(b_{2}\) \(\frac {\left (1+r \right ) \left (2+r \right )}{\left (r^{2}+2 r -4\right ) \left (r^{2}+4 r -1\right )}\) \(\frac {-2+\sqrt {5}}{-4+8 \sqrt {5}}\)
\(b_{3}\) \(\frac {\left (1+r \right ) \left (2+r \right ) \left (3+r \right )}{\left (r^{2}+2 r -4\right ) \left (r^{2}+4 r -1\right ) \left (r^{2}+6 r +4\right )}\) \(\frac {\left (\sqrt {5}-3\right ) \left (-2+\sqrt {5}\right )}{276-96 \sqrt {5}}\)
\(b_{4}\) \(\frac {\left (1+r \right ) \left (2+r \right ) \left (3+r \right ) \left (4+r \right )}{\left (r^{2}+2 r -4\right ) \left (r^{2}+4 r -1\right ) \left (r^{2}+6 r +4\right ) \left (r^{2}+8 r +11\right )}\) \(\frac {\left (\sqrt {5}-3\right ) \left (-4+\sqrt {5}\right )}{2208-768 \sqrt {5}}\)

For \(n = 5\), using the above recursive equation gives \[ b_{5}=\frac {\left (1+r \right ) \left (2+r \right ) \left (3+r \right ) \left (4+r \right ) \left (5+r \right )}{\left (r^{2}+2 r -4\right ) \left (r^{2}+4 r -1\right ) \left (r^{2}+6 r +4\right ) \left (r^{2}+8 r +11\right ) \left (r^{2}+10 r +20\right )} \] Which for the root \(r = -\sqrt {5}\) becomes \[ b_{5}=\frac {\left (\sqrt {5}-3\right ) \left (-4+\sqrt {5}\right ) \left (-5+\sqrt {5}\right )}{41280 \sqrt {5}-93600} \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(\frac {1+r}{r^{2}+2 r -4}\) \(\frac {\sqrt {5}-1}{-1+2 \sqrt {5}}\)
\(b_{2}\) \(\frac {\left (1+r \right ) \left (2+r \right )}{\left (r^{2}+2 r -4\right ) \left (r^{2}+4 r -1\right )}\) \(\frac {-2+\sqrt {5}}{-4+8 \sqrt {5}}\)
\(b_{3}\) \(\frac {\left (1+r \right ) \left (2+r \right ) \left (3+r \right )}{\left (r^{2}+2 r -4\right ) \left (r^{2}+4 r -1\right ) \left (r^{2}+6 r +4\right )}\) \(\frac {\left (\sqrt {5}-3\right ) \left (-2+\sqrt {5}\right )}{276-96 \sqrt {5}}\)
\(b_{4}\) \(\frac {\left (1+r \right ) \left (2+r \right ) \left (3+r \right ) \left (4+r \right )}{\left (r^{2}+2 r -4\right ) \left (r^{2}+4 r -1\right ) \left (r^{2}+6 r +4\right ) \left (r^{2}+8 r +11\right )}\) \(\frac {\left (\sqrt {5}-3\right ) \left (-4+\sqrt {5}\right )}{2208-768 \sqrt {5}}\)
\(b_{5}\) \(\frac {\left (1+r \right ) \left (2+r \right ) \left (3+r \right ) \left (4+r \right ) \left (5+r \right )}{\left (r^{2}+2 r -4\right ) \left (r^{2}+4 r -1\right ) \left (r^{2}+6 r +4\right ) \left (r^{2}+8 r +11\right ) \left (r^{2}+10 r +20\right )}\) \(\frac {\left (\sqrt {5}-3\right ) \left (-4+\sqrt {5}\right ) \left (-5+\sqrt {5}\right )}{41280 \sqrt {5}-93600}\)

Using the above table, then the solution \(y_{2}\left (x \right )\) is \begin {align*} y_{2}\left (x \right )&= x^{\sqrt {5}} \left (b_{0}+b_{1} x +b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6}\dots \right ) \\ &= x^{-\sqrt {5}} \left (1+\frac {\left (\sqrt {5}-1\right ) x}{-1+2 \sqrt {5}}+\frac {\left (-2+\sqrt {5}\right ) x^{2}}{-4+8 \sqrt {5}}+\frac {\left (\sqrt {5}-3\right ) \left (-2+\sqrt {5}\right ) x^{3}}{276-96 \sqrt {5}}+\frac {\left (\sqrt {5}-3\right ) \left (-4+\sqrt {5}\right ) x^{4}}{2208-768 \sqrt {5}}+\frac {\left (\sqrt {5}-3\right ) \left (-4+\sqrt {5}\right ) \left (-5+\sqrt {5}\right ) x^{5}}{41280 \sqrt {5}-93600}+O\left (x^{6}\right )\right ) \end {align*}

Therefore the homogeneous solution is \begin{align*} y_h(x) &= c_{1} y_{1}\left (x \right )+c_{2} y_{2}\left (x \right ) \\ &= c_{1} x^{\sqrt {5}} \left (1+\frac {\left (\sqrt {5}+1\right ) x}{1+2 \sqrt {5}}+\frac {\left (2+\sqrt {5}\right ) x^{2}}{4+8 \sqrt {5}}+\frac {\left (2+\sqrt {5}\right ) \left (\sqrt {5}+3\right ) x^{3}}{276+96 \sqrt {5}}+\frac {\left (4+\sqrt {5}\right ) \left (\sqrt {5}+3\right ) x^{4}}{2208+768 \sqrt {5}}+\frac {\left (\sqrt {5}+3\right ) \left (4+\sqrt {5}\right ) \left (5+\sqrt {5}\right ) x^{5}}{41280 \sqrt {5}+93600}+O\left (x^{6}\right )\right ) + c_{2} x^{-\sqrt {5}} \left (1+\frac {\left (\sqrt {5}-1\right ) x}{-1+2 \sqrt {5}}+\frac {\left (-2+\sqrt {5}\right ) x^{2}}{-4+8 \sqrt {5}}+\frac {\left (\sqrt {5}-3\right ) \left (-2+\sqrt {5}\right ) x^{3}}{276-96 \sqrt {5}}+\frac {\left (\sqrt {5}-3\right ) \left (-4+\sqrt {5}\right ) x^{4}}{2208-768 \sqrt {5}}+\frac {\left (\sqrt {5}-3\right ) \left (-4+\sqrt {5}\right ) \left (-5+\sqrt {5}\right ) x^{5}}{41280 \sqrt {5}-93600}+O\left (x^{6}\right )\right ) \\ \end{align*} Hence the final solution is \begin{align*} y &= y_h \\ &= c_{1} x^{\sqrt {5}} \left (1+\frac {\left (\sqrt {5}+1\right ) x}{1+2 \sqrt {5}}+\frac {\left (2+\sqrt {5}\right ) x^{2}}{4+8 \sqrt {5}}+\frac {\left (2+\sqrt {5}\right ) \left (\sqrt {5}+3\right ) x^{3}}{276+96 \sqrt {5}}+\frac {\left (4+\sqrt {5}\right ) \left (\sqrt {5}+3\right ) x^{4}}{2208+768 \sqrt {5}}+\frac {\left (\sqrt {5}+3\right ) \left (4+\sqrt {5}\right ) \left (5+\sqrt {5}\right ) x^{5}}{41280 \sqrt {5}+93600}+O\left (x^{6}\right )\right )+c_{2} x^{-\sqrt {5}} \left (1+\frac {\left (\sqrt {5}-1\right ) x}{-1+2 \sqrt {5}}+\frac {\left (-2+\sqrt {5}\right ) x^{2}}{-4+8 \sqrt {5}}+\frac {\left (\sqrt {5}-3\right ) \left (-2+\sqrt {5}\right ) x^{3}}{276-96 \sqrt {5}}+\frac {\left (\sqrt {5}-3\right ) \left (-4+\sqrt {5}\right ) x^{4}}{2208-768 \sqrt {5}}+\frac {\left (\sqrt {5}-3\right ) \left (-4+\sqrt {5}\right ) \left (-5+\sqrt {5}\right ) x^{5}}{41280 \sqrt {5}-93600}+O\left (x^{6}\right )\right ) \\ \end{align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= c_{1} x^{\sqrt {5}} \left (1+\frac {\left (\sqrt {5}+1\right ) x}{1+2 \sqrt {5}}+\frac {\left (2+\sqrt {5}\right ) x^{2}}{4+8 \sqrt {5}}+\frac {\left (2+\sqrt {5}\right ) \left (\sqrt {5}+3\right ) x^{3}}{276+96 \sqrt {5}}+\frac {\left (4+\sqrt {5}\right ) \left (\sqrt {5}+3\right ) x^{4}}{2208+768 \sqrt {5}}+\frac {\left (\sqrt {5}+3\right ) \left (4+\sqrt {5}\right ) \left (5+\sqrt {5}\right ) x^{5}}{41280 \sqrt {5}+93600}+O\left (x^{6}\right )\right )+c_{2} x^{-\sqrt {5}} \left (1+\frac {\left (\sqrt {5}-1\right ) x}{-1+2 \sqrt {5}}+\frac {\left (-2+\sqrt {5}\right ) x^{2}}{-4+8 \sqrt {5}}+\frac {\left (\sqrt {5}-3\right ) \left (-2+\sqrt {5}\right ) x^{3}}{276-96 \sqrt {5}}+\frac {\left (\sqrt {5}-3\right ) \left (-4+\sqrt {5}\right ) x^{4}}{2208-768 \sqrt {5}}+\frac {\left (\sqrt {5}-3\right ) \left (-4+\sqrt {5}\right ) \left (-5+\sqrt {5}\right ) x^{5}}{41280 \sqrt {5}-93600}+O\left (x^{6}\right )\right ) \\ \end{align*}

Verification of solutions

\[ y = c_{1} x^{\sqrt {5}} \left (1+\frac {\left (\sqrt {5}+1\right ) x}{1+2 \sqrt {5}}+\frac {\left (2+\sqrt {5}\right ) x^{2}}{4+8 \sqrt {5}}+\frac {\left (2+\sqrt {5}\right ) \left (\sqrt {5}+3\right ) x^{3}}{276+96 \sqrt {5}}+\frac {\left (4+\sqrt {5}\right ) \left (\sqrt {5}+3\right ) x^{4}}{2208+768 \sqrt {5}}+\frac {\left (\sqrt {5}+3\right ) \left (4+\sqrt {5}\right ) \left (5+\sqrt {5}\right ) x^{5}}{41280 \sqrt {5}+93600}+O\left (x^{6}\right )\right )+c_{2} x^{-\sqrt {5}} \left (1+\frac {\left (\sqrt {5}-1\right ) x}{-1+2 \sqrt {5}}+\frac {\left (-2+\sqrt {5}\right ) x^{2}}{-4+8 \sqrt {5}}+\frac {\left (\sqrt {5}-3\right ) \left (-2+\sqrt {5}\right ) x^{3}}{276-96 \sqrt {5}}+\frac {\left (\sqrt {5}-3\right ) \left (-4+\sqrt {5}\right ) x^{4}}{2208-768 \sqrt {5}}+\frac {\left (\sqrt {5}-3\right ) \left (-4+\sqrt {5}\right ) \left (-5+\sqrt {5}\right ) x^{5}}{41280 \sqrt {5}-93600}+O\left (x^{6}\right )\right ) \] Verified OK.

17.15.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & x^{2} y^{\prime \prime }+\left (-x^{2}+x \right ) y^{\prime }+\left (-x -5\right ) y=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & y^{\prime \prime } \\ \bullet & {} & \textrm {Isolate 2nd derivative}\hspace {3pt} \\ {} & {} & y^{\prime \prime }=\frac {\left (x +5\right ) y}{x^{2}}+\frac {\left (x -1\right ) y^{\prime }}{x} \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & y^{\prime \prime }-\frac {\left (x -1\right ) y^{\prime }}{x}-\frac {\left (x +5\right ) y}{x^{2}}=0 \\ \square & {} & \textrm {Check to see if}\hspace {3pt} x_{0}=0\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & \circ & \textrm {Define functions}\hspace {3pt} \\ {} & {} & \left [P_{2}\left (x \right )=-\frac {x -1}{x}, P_{3}\left (x \right )=-\frac {x +5}{x^{2}}\right ] \\ {} & \circ & x \cdot P_{2}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x \cdot P_{2}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=1 \\ {} & \circ & x^{2}\cdot P_{3}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x^{2}\cdot P_{3}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=-5 \\ {} & \circ & x =0\textrm {is a regular singular point}\hspace {3pt} \\ & {} & \textrm {Check to see if}\hspace {3pt} x_{0}=0\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & {} & x_{0}=0 \\ \bullet & {} & \textrm {Multiply by denominators}\hspace {3pt} \\ {} & {} & x^{2} y^{\prime \prime }-x \left (x -1\right ) y^{\prime }+\left (-x -5\right ) y=0 \\ \bullet & {} & \textrm {Assume series solution for}\hspace {3pt} y \\ {} & {} & y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +r} \\ \square & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{m}\cdot y\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =0..1 \\ {} & {} & x^{m}\cdot y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +r +m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k -m \\ {} & {} & x^{m}\cdot y=\moverset {\infty }{\munderset {k =m}{\sum }}a_{k -m} x^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{m}\cdot y^{\prime }\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =1..2 \\ {} & {} & x^{m}\cdot y^{\prime }=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) x^{k +r -1+m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +1-m \\ {} & {} & x^{m}\cdot y^{\prime }=\moverset {\infty }{\munderset {k =-1+m}{\sum }}a_{k +1-m} \left (k +1-m +r \right ) x^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{2}\cdot y^{\prime \prime }\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & x^{2}\cdot y^{\prime \prime }=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) \left (k +r -1\right ) x^{k +r} \\ & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & {} & a_{0} \left (r^{2}-5\right ) x^{r}+\left (\moverset {\infty }{\munderset {k =1}{\sum }}\left (a_{k} \left (k^{2}+2 k r +r^{2}-5\right )-a_{k -1} \left (k +r \right )\right ) x^{k +r}\right )=0 \\ \bullet & {} & a_{0}\textrm {cannot be 0 by assumption, giving the indicial equation}\hspace {3pt} \\ {} & {} & r^{2}-5=0 \\ \bullet & {} & \textrm {Values of r that satisfy the indicial equation}\hspace {3pt} \\ {} & {} & r \in \left \{\sqrt {5}, -\sqrt {5}\right \} \\ \bullet & {} & \textrm {Each term in the series must be 0, giving the recursion relation}\hspace {3pt} \\ {} & {} & a_{k} \left (k^{2}+2 k r +r^{2}-5\right )-a_{k -1} \left (k +r \right )=0 \\ \bullet & {} & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +1 \\ {} & {} & a_{k +1} \left (\left (k +1\right )^{2}+2 \left (k +1\right ) r +r^{2}-5\right )-a_{k} \left (k +r +1\right )=0 \\ \bullet & {} & \textrm {Recursion relation that defines series solution to ODE}\hspace {3pt} \\ {} & {} & a_{k +1}=\frac {a_{k} \left (k +r +1\right )}{k^{2}+2 k r +r^{2}+2 k +2 r -4} \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =\sqrt {5} \\ {} & {} & a_{k +1}=\frac {a_{k} \left (k +\sqrt {5}+1\right )}{k^{2}+2 k \sqrt {5}+1+2 k +2 \sqrt {5}} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =\sqrt {5} \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +\sqrt {5}}, a_{k +1}=\frac {a_{k} \left (k +\sqrt {5}+1\right )}{k^{2}+2 k \sqrt {5}+1+2 k +2 \sqrt {5}}\right ] \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =-\sqrt {5} \\ {} & {} & a_{k +1}=\frac {a_{k} \left (k -\sqrt {5}+1\right )}{k^{2}-2 k \sqrt {5}+1+2 k -2 \sqrt {5}} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =-\sqrt {5} \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k -\sqrt {5}}, a_{k +1}=\frac {a_{k} \left (k -\sqrt {5}+1\right )}{k^{2}-2 k \sqrt {5}+1+2 k -2 \sqrt {5}}\right ] \\ \bullet & {} & \textrm {Combine solutions and rename parameters}\hspace {3pt} \\ {} & {} & \left [y=\left (\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +\sqrt {5}}\right )+\left (\moverset {\infty }{\munderset {k =0}{\sum }}b_{k} x^{k -\sqrt {5}}\right ), a_{1+k}=\frac {a_{k} \left (k +\sqrt {5}+1\right )}{k^{2}+2 k \sqrt {5}+1+2 k +2 \sqrt {5}}, b_{1+k}=\frac {b_{k} \left (k -\sqrt {5}+1\right )}{k^{2}-2 k \sqrt {5}+1+2 k -2 \sqrt {5}}\right ] \end {array} \]

Maple trace

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
trying a symmetry of the form [xi=0, eta=F(x)] 
checking if the LODE is missing y 
-> Trying a Liouvillian solution using Kovacics algorithm 
<- No Liouvillian solutions exists 
-> Trying a solution in terms of special functions: 
   -> Bessel 
   -> elliptic 
   -> Legendre 
   <- Kummer successful 
<- special function solution successful`
 

Solution by Maple

Time used: 0.031 (sec). Leaf size: 503

Order:=6; 
dsolve(x^2*diff(y(x),x$2)+x*(1-x)*diff(y(x),x)-(5+x)*y(x)=0,y(x),type='series',x=0);
 

\[ y \left (x \right ) = c_{1} x^{-\sqrt {5}} \left (1+\frac {\sqrt {5}-1}{-1+2 \sqrt {5}} x +\frac {-2+\sqrt {5}}{-4+8 \sqrt {5}} x^{2}+\frac {\left (-2+\sqrt {5}\right ) \left (\sqrt {5}-3\right )}{276-96 \sqrt {5}} x^{3}+\frac {\left (\sqrt {5}-3\right ) \left (\sqrt {5}-4\right )}{2208-768 \sqrt {5}} x^{4}+\frac {\left (\sqrt {5}-3\right ) \left (\sqrt {5}-4\right ) \left (-5+\sqrt {5}\right )}{41280 \sqrt {5}-93600} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+c_{2} x^{\sqrt {5}} \left (1+\frac {\sqrt {5}+1}{1+2 \sqrt {5}} x +\frac {\sqrt {5}+2}{4+8 \sqrt {5}} x^{2}+\frac {\left (\sqrt {5}+2\right ) \left (3+\sqrt {5}\right )}{276+96 \sqrt {5}} x^{3}+\frac {\left (3+\sqrt {5}\right ) \left (\sqrt {5}+4\right )}{2208+768 \sqrt {5}} x^{4}+\frac {\left (3+\sqrt {5}\right ) \left (\sqrt {5}+4\right ) \left (5+\sqrt {5}\right )}{41280 \sqrt {5}+93600} x^{5}+\operatorname {O}\left (x^{6}\right )\right ) \]

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 1093

AsymptoticDSolveValue[x^2*y''[x]+x*(1-x)*y'[x]-(5+x)*y[x]==0,y[x],{x,0,5}]
 

\[ y(x)\to \left (\frac {\left (-5-\sqrt {5}\right ) \left (-4-\sqrt {5}\right ) \left (-3-\sqrt {5}\right ) \left (-2-\sqrt {5}\right ) \left (1+\sqrt {5}\right ) x^5}{\left (-4+\sqrt {5}+\sqrt {5} \left (1+\sqrt {5}\right )\right ) \left (-3+\sqrt {5}+\left (1+\sqrt {5}\right ) \left (2+\sqrt {5}\right )\right ) \left (-2+\sqrt {5}+\left (2+\sqrt {5}\right ) \left (3+\sqrt {5}\right )\right ) \left (-1+\sqrt {5}+\left (3+\sqrt {5}\right ) \left (4+\sqrt {5}\right )\right ) \left (\sqrt {5}+\left (4+\sqrt {5}\right ) \left (5+\sqrt {5}\right )\right )}-\frac {\left (-4-\sqrt {5}\right ) \left (-3-\sqrt {5}\right ) \left (-2-\sqrt {5}\right ) \left (1+\sqrt {5}\right ) x^4}{\left (-4+\sqrt {5}+\sqrt {5} \left (1+\sqrt {5}\right )\right ) \left (-3+\sqrt {5}+\left (1+\sqrt {5}\right ) \left (2+\sqrt {5}\right )\right ) \left (-2+\sqrt {5}+\left (2+\sqrt {5}\right ) \left (3+\sqrt {5}\right )\right ) \left (-1+\sqrt {5}+\left (3+\sqrt {5}\right ) \left (4+\sqrt {5}\right )\right )}+\frac {\left (-3-\sqrt {5}\right ) \left (-2-\sqrt {5}\right ) \left (1+\sqrt {5}\right ) x^3}{\left (-4+\sqrt {5}+\sqrt {5} \left (1+\sqrt {5}\right )\right ) \left (-3+\sqrt {5}+\left (1+\sqrt {5}\right ) \left (2+\sqrt {5}\right )\right ) \left (-2+\sqrt {5}+\left (2+\sqrt {5}\right ) \left (3+\sqrt {5}\right )\right )}-\frac {\left (-2-\sqrt {5}\right ) \left (1+\sqrt {5}\right ) x^2}{\left (-4+\sqrt {5}+\sqrt {5} \left (1+\sqrt {5}\right )\right ) \left (-3+\sqrt {5}+\left (1+\sqrt {5}\right ) \left (2+\sqrt {5}\right )\right )}+\frac {\left (1+\sqrt {5}\right ) x}{-4+\sqrt {5}+\sqrt {5} \left (1+\sqrt {5}\right )}+1\right ) c_1 x^{\sqrt {5}}+\left (\frac {\left (1-\sqrt {5}\right ) \left (-5+\sqrt {5}\right ) \left (-4+\sqrt {5}\right ) \left (-3+\sqrt {5}\right ) \left (-2+\sqrt {5}\right ) x^5}{\left (-4-\sqrt {5}-\sqrt {5} \left (1-\sqrt {5}\right )\right ) \left (-3-\sqrt {5}+\left (1-\sqrt {5}\right ) \left (2-\sqrt {5}\right )\right ) \left (-2-\sqrt {5}+\left (2-\sqrt {5}\right ) \left (3-\sqrt {5}\right )\right ) \left (-1-\sqrt {5}+\left (3-\sqrt {5}\right ) \left (4-\sqrt {5}\right )\right ) \left (-\sqrt {5}+\left (4-\sqrt {5}\right ) \left (5-\sqrt {5}\right )\right )}-\frac {\left (1-\sqrt {5}\right ) \left (-4+\sqrt {5}\right ) \left (-3+\sqrt {5}\right ) \left (-2+\sqrt {5}\right ) x^4}{\left (-4-\sqrt {5}-\sqrt {5} \left (1-\sqrt {5}\right )\right ) \left (-3-\sqrt {5}+\left (1-\sqrt {5}\right ) \left (2-\sqrt {5}\right )\right ) \left (-2-\sqrt {5}+\left (2-\sqrt {5}\right ) \left (3-\sqrt {5}\right )\right ) \left (-1-\sqrt {5}+\left (3-\sqrt {5}\right ) \left (4-\sqrt {5}\right )\right )}+\frac {\left (1-\sqrt {5}\right ) \left (-3+\sqrt {5}\right ) \left (-2+\sqrt {5}\right ) x^3}{\left (-4-\sqrt {5}-\sqrt {5} \left (1-\sqrt {5}\right )\right ) \left (-3-\sqrt {5}+\left (1-\sqrt {5}\right ) \left (2-\sqrt {5}\right )\right ) \left (-2-\sqrt {5}+\left (2-\sqrt {5}\right ) \left (3-\sqrt {5}\right )\right )}-\frac {\left (1-\sqrt {5}\right ) \left (-2+\sqrt {5}\right ) x^2}{\left (-4-\sqrt {5}-\sqrt {5} \left (1-\sqrt {5}\right )\right ) \left (-3-\sqrt {5}+\left (1-\sqrt {5}\right ) \left (2-\sqrt {5}\right )\right )}+\frac {\left (1-\sqrt {5}\right ) x}{-4-\sqrt {5}-\sqrt {5} \left (1-\sqrt {5}\right )}+1\right ) c_2 x^{-\sqrt {5}} \]