2.15 problem Problem 15

2.15.1 Existence and uniqueness analysis
2.15.2 Solving as separable ode
2.15.3 Maple step by step solution

Internal problem ID [2636]
Internal file name [OUTPUT/2128_Sunday_June_05_2022_02_49_38_AM_92792261/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential Equations. page 43
Problem number: Problem 15.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type

[_separable]

\[ \boxed {y^{\prime }-y^{3} \sin \left (x \right )=0} \] With initial conditions \begin {align*} [y \left (0\right ) = 0] \end {align*}

2.15.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as \begin {align*} y^{\prime } &= f(x,y)\\ &= y^{3} \sin \left (x \right ) \end {align*}

The \(x\) domain of \(f(x,y)\) when \(y=0\) is \[ \{-\infty

The \(x\) domain of \(\frac {\partial f}{\partial y}\) when \(y=0\) is \[ \{-\infty

2.15.2 Solving as separable ode

In canonical form the ODE is \begin {align*} y' &= F(x,y)\\ &= f( x) g(y)\\ &= y^{3} \sin \left (x \right ) \end {align*}

Where \(f(x)=\sin \left (x \right )\) and \(g(y)=y^{3}\). Since unique solution exists and \(g(y)\) evaluated at \(y_0 = 0\) is zero, then the solution is \begin {align*} y &= y_0 \\ &= 0 \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= 0 \\ \end{align*}

(a) Solution plot

(b) Slope field plot

Verification of solutions

\[ y = 0 \] Verified OK.

2.15.3 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left [y^{\prime }-y^{3} \sin \left (x \right )=0, y \left (0\right )=0\right ] \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & y^{\prime }=y^{3} \sin \left (x \right ) \\ \bullet & {} & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {y^{\prime }}{y^{3}}=\sin \left (x \right ) \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int \frac {y^{\prime }}{y^{3}}d x =\int \sin \left (x \right )d x +c_{1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & -\frac {1}{2 y^{2}}=-\cos \left (x \right )+c_{1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} y \\ {} & {} & \left \{y=\frac {1}{\sqrt {-2 c_{1} +2 \cos \left (x \right )}}, y=-\frac {1}{\sqrt {-2 c_{1} +2 \cos \left (x \right )}}\right \} \\ \bullet & {} & \textrm {Use initial condition}\hspace {3pt} y \left (0\right )=0 \\ {} & {} & 0=\frac {1}{\sqrt {-2 c_{1} +2}} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} c_{1} \\ {} & {} & c_{1} =\left (\right ) \\ \bullet & {} & \textrm {Solution does not satisfy initial condition}\hspace {3pt} \\ \bullet & {} & \textrm {Use initial condition}\hspace {3pt} y \left (0\right )=0 \\ {} & {} & 0=-\frac {1}{\sqrt {-2 c_{1} +2}} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} c_{1} \\ {} & {} & c_{1} =\left (\right ) \\ \bullet & {} & \textrm {Solution does not satisfy initial condition}\hspace {3pt} \end {array} \]

Maple trace

`Methods for first order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying 1st order linear 
trying Bernoulli 
<- Bernoulli successful`
 

Solution by Maple

Time used: 0.0 (sec). Leaf size: 5

dsolve([diff(y(x),x)=y(x)^3*sin(x),y(0) = 0],y(x), singsol=all)
 

\[ y \left (x \right ) = 0 \]

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 6

DSolve[{y'[x]==y[x]^3*Sin[x],{y[0]==0}},y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to 0 \]