1.26 problem Problem 37

1.26.1 Maple step by step solution

Internal problem ID [12136]
Internal file name [OUTPUT/10789_Tuesday_September_12_2023_08_52_16_AM_73897234/index.tex]

Book: Differential equations and the calculus of variations by L. ElSGOLTS. MIR PUBLISHERS, MOSCOW, Third printing 1977.
Section: Chapter 1, First-Order Differential Equations. Problems page 88
Problem number: Problem 37.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type

[_quadrature]

\[ \boxed {{y^{\prime }}^{3}-{\mathrm e}^{2 x} y^{\prime }=0} \] The ode \begin {align*} {y^{\prime }}^{3}-{\mathrm e}^{2 x} y^{\prime } = 0 \end {align*}

is factored to \begin {align*} y^{\prime } \left (-{y^{\prime }}^{2}+{\mathrm e}^{2 x}\right ) = 0 \end {align*}

Which gives the following equations \begin {align*} y^{\prime } = 0\tag {1} \\ -{y^{\prime }}^{2}+{\mathrm e}^{2 x} = 0\tag {2} \\ \end {align*}

Each of the above equations is now solved.

Solving ODE (1) Integrating both sides gives \begin {align*} y &= \int { 0\,\mathop {\mathrm {d}x}}\\ &= c_{1} \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= c_{1} \\ \end{align*}

Verification of solutions

\[ y = c_{1} \] Verified OK.

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= c_{1} \\ \end{align*}

Verification of solutions

\[ y = c_{1} \] Verified OK.

Solving ODE (2) Solving the given ode for \(y^{\prime }\) results in \(2\) differential equations to solve. Each one of these will generate a solution. The equations generated are \begin {align*} y^{\prime }&={\mathrm e}^{x} \tag {1} \\ y^{\prime }&=-{\mathrm e}^{x} \tag {2} \end {align*}

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives \begin {align*} y &= \int { {\mathrm e}^{x}\,\mathop {\mathrm {d}x}}\\ &= {\mathrm e}^{x}+c_{2} \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= {\mathrm e}^{x}+c_{2} \\ \end{align*}

Verification of solutions

\[ y = {\mathrm e}^{x}+c_{2} \] Verified OK.

Solving equation (2)

Integrating both sides gives \begin {align*} y &= \int { -{\mathrm e}^{x}\,\mathop {\mathrm {d}x}}\\ &= -{\mathrm e}^{x}+c_{3} \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= -{\mathrm e}^{x}+c_{3} \\ \end{align*}

Verification of solutions

\[ y = -{\mathrm e}^{x}+c_{3} \] Verified OK.

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= {\mathrm e}^{x}+c_{2} \\ \tag{2} y &= -{\mathrm e}^{x}+c_{3} \\ \end{align*}

Verification of solutions

\[ y = {\mathrm e}^{x}+c_{2} \] Verified OK.

\[ y = -{\mathrm e}^{x}+c_{3} \] Verified OK.

1.26.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & {y^{\prime }}^{3}-{\mathrm e}^{2 x} y^{\prime }=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \left [y^{\prime }=0, y^{\prime }={\mathrm e}^{x}, y^{\prime }=-{\mathrm e}^{x}\right ] \\ \square & {} & \textrm {Solve the equation}\hspace {3pt} y^{\prime }=0 \\ {} & \circ & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int y^{\prime }d x =\int 0d x +c_{1} \\ {} & \circ & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & y=c_{1} \\ {} & \circ & \textrm {Solve for}\hspace {3pt} y \\ {} & {} & y=c_{1} \\ \square & {} & \textrm {Solve the equation}\hspace {3pt} y^{\prime }={\mathrm e}^{x} \\ {} & \circ & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int y^{\prime }d x =\int {\mathrm e}^{x}d x +c_{1} \\ {} & \circ & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & y={\mathrm e}^{x}+c_{1} \\ {} & \circ & \textrm {Solve for}\hspace {3pt} y \\ {} & {} & y={\mathrm e}^{x}+c_{1} \\ \square & {} & \textrm {Solve the equation}\hspace {3pt} y^{\prime }=-{\mathrm e}^{x} \\ {} & \circ & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int y^{\prime }d x =\int -{\mathrm e}^{x}d x +c_{1} \\ {} & \circ & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & y=-{\mathrm e}^{x}+c_{1} \\ {} & \circ & \textrm {Solve for}\hspace {3pt} y \\ {} & {} & y=-{\mathrm e}^{x}+c_{1} \\ \bullet & {} & \textrm {Set of solutions}\hspace {3pt} \\ {} & {} & \left \{y=c_{1} , y=-{\mathrm e}^{x}+c_{1} , y={\mathrm e}^{x}+c_{1} \right \} \end {array} \]

Maple trace

`Methods for first order ODEs: 
-> Solving 1st order ODE of high degree, 1st attempt 
trying 1st order WeierstrassP solution for high degree ODE 
trying 1st order WeierstrassPPrime solution for high degree ODE 
trying 1st order JacobiSN solution for high degree ODE 
trying 1st order ODE linearizable_by_differentiation 
trying differential order: 1; missing variables 
<- differential order: 1; missing  y(x)  successful 
Methods for first order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying 1st order linear 
<- 1st order linear successful`
 

Solution by Maple

Time used: 0.062 (sec). Leaf size: 21

dsolve(diff(y(x),x)^3-diff(y(x),x)*exp(2*x)=0,y(x), singsol=all)
 

\begin{align*} y \left (x \right ) &= -{\mathrm e}^{x}+c_{1} \\ y \left (x \right ) &= {\mathrm e}^{x}+c_{1} \\ y \left (x \right ) &= c_{1} \\ \end{align*}

Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 29

DSolve[y'[x]^3-y'[x]*Exp[2*x]==0,y[x],x,IncludeSingularSolutions -> True]
 

\begin{align*} y(x)\to c_1 \\ y(x)\to -e^x+c_1 \\ y(x)\to e^x+c_1 \\ \end{align*}