2.37 problem Problem 52

2.37.1 Solving as second order nonlinear solved by mainardi lioville method ode

Internal problem ID [12199]
Internal file name [OUTPUT/10852_Thursday_September_21_2023_05_48_07_AM_16469034/index.tex]

Book: Differential equations and the calculus of variations by L. ElSGOLTS. MIR PUBLISHERS, MOSCOW, Third printing 1977.
Section: Chapter 2, DIFFERENTIAL EQUATIONS OF THE SECOND ORDER AND HIGHER. Problems page 172
Problem number: Problem 52.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_nonlinear_solved_by_mainardi_lioville_method"

Maple gives the following as the ode type

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

\[ \boxed {x y y^{\prime \prime }-x {y^{\prime }}^{2}-y^{\prime } y=0} \]

2.37.1 Solving as second order nonlinear solved by mainardi lioville method ode

The ode has the Liouville form given by \begin {align*} y^{\prime \prime }+ f(x) y^{\prime } + g(y) {y^{\prime }}^{2} &= 0 \tag {1A} \end {align*}

Where in this problem \begin {align*} f(x) &= -\frac {1}{x}\\ g(y) &= -\frac {1}{y} \end {align*}

Dividing through by \(y^{\prime }\) then Eq (1A) becomes \begin {align*} \frac {y^{\prime \prime }}{y^{\prime }}+ f + g y^{\prime } &= 0 \tag {2A} \end {align*}

But the first term in Eq (2A) can be written as \begin {align*} \frac {y^{\prime \prime }}{y^{\prime }}&= \frac {d}{dx} \ln \left ( y^{\prime } \right )\tag {3A} \end {align*}

And the last term in Eq (2A) can be written as \begin {align*} g \frac {dy}{dx}&= \left ( \frac {d}{dy} \int g d y\right ) \frac {dy}{dx} \\ &= \frac {d}{dx} \int g d y\tag {4A} \end {align*}

Substituting (3A,4A) back into (2A) gives \begin {align*} \frac {d}{dx} \ln \left ( y^{\prime } \right ) + \frac {d}{dx} \int g d y &= -f \tag {5A} \end {align*}

Integrating the above w.r.t. \(x\) gives \begin {align*} \ln \left ( y^{\prime } \right ) + \int g d y &= - \int f d x + c_{1} \end {align*}

Where \(c_1\) is arbitrary constant. Taking the exponential of the above gives \begin {align*} y^{\prime } &= c_{2} e^{\int -g d y}\, e^{\int -f d x}\tag {6A} \end {align*}

Where \(c_{2}\) is a new arbitrary constant. But since \(g=-\frac {1}{y}\) and \(f=-\frac {1}{x}\), then \begin {align*} \int -g d y &= \int \frac {1}{y}d y\\ &= \ln \left (y\right )\\ \int -f d x &= \int \frac {1}{x}d x\\ &= \ln \left (x \right ) \end {align*}

Substituting the above into Eq(6A) gives \[ y^{\prime } = c_{2} y x \] Which is now solved as first order separable ode. In canonical form the ODE is \begin {align*} y' &= F(x,y)\\ &= f( x) g(y)\\ &= c_{2} y x \end {align*}

Where \(f(x)=c_{2} x\) and \(g(y)=y\). Integrating both sides gives \begin {align*} \frac {1}{y} \,dy &= c_{2} x \,d x\\ \int { \frac {1}{y} \,dy} &= \int {c_{2} x \,d x}\\ \ln \left (y \right )&=\frac {c_{2} x^{2}}{2}+c_{3}\\ y&={\mathrm e}^{\frac {c_{2} x^{2}}{2}+c_{3}}\\ &=c_{3} {\mathrm e}^{\frac {c_{2} x^{2}}{2}} \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= c_{3} {\mathrm e}^{\frac {c_{2} x^{2}}{2}} \\ \end{align*}

Verification of solutions

\[ y = c_{3} {\mathrm e}^{\frac {c_{2} x^{2}}{2}} \] Verified OK.

Maple trace

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying 2nd order Liouville 
<- 2nd_order Liouville successful`
 

Solution by Maple

Time used: 0.062 (sec). Leaf size: 17

dsolve(x*y(x)*diff(y(x),x$2)-x*diff(y(x),x)^2-y(x)*diff(y(x),x)=0,y(x), singsol=all)
 

\begin{align*} y \left (x \right ) &= 0 \\ y \left (x \right ) &= {\mathrm e}^{\frac {c_{1} x^{2}}{2}} c_{2} \\ \end{align*}

Solution by Mathematica

Time used: 0.196 (sec). Leaf size: 19

DSolve[x*y[x]*y''[x]-x*y'[x]^2-y[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to c_2 e^{\frac {c_1 x^2}{2}} \]