14.8 problem 8

14.8.1 Maple step by step solution

Internal problem ID [1800]
Internal file name [OUTPUT/1801_Sunday_June_05_2022_02_32_29_AM_67722189/index.tex]

Book: Differential equations and their applications, 3rd ed., M. Braun
Section: Section 2.8.2, Regular singular points, the method of Frobenius. Page 214
Problem number: 8.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type

[_Laguerre]

\[ \boxed {2 t y^{\prime \prime }+\left (1-2 t \right ) y^{\prime }-y=0} \] With the expansion point for the power series method at \(t = 0\).

The type of the expansion point is first determined. This is done on the homogeneous part of the ODE. \[ 2 t y^{\prime \prime }+\left (1-2 t \right ) y^{\prime }-y = 0 \] The following is summary of singularities for the above ode. Writing the ode as \begin {align*} y^{\prime \prime }+p(t) y^{\prime } + q(t) y &=0 \end {align*}

Where \begin {align*} p(t) &= -\frac {-1+2 t}{2 t}\\ q(t) &= -\frac {1}{2 t}\\ \end {align*}

Table 132: Table \(p(t),q(t)\) singularites.
\(p(t)=-\frac {-1+2 t}{2 t}\)
singularity type
\(t = 0\) \(\text {``regular''}\)
\(q(t)=-\frac {1}{2 t}\)
singularity type
\(t = 0\) \(\text {``regular''}\)

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : \([0]\)

Irregular singular points : \([\infty ]\)

Since \(t = 0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be \[ 2 t y^{\prime \prime }+\left (1-2 t \right ) y^{\prime }-y = 0 \] Let the solution be represented as Frobenius power series of the form \[ y = \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} t^{n +r} \] Then \begin{align*} y^{\prime } &= \moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} t^{n +r -1} \\ y^{\prime \prime } &= \moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) \left (n +r -1\right ) a_{n} t^{n +r -2} \\ \end{align*} Substituting the above back into the ode gives \begin{equation} \tag{1} 2 t \left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) \left (n +r -1\right ) a_{n} t^{n +r -2}\right )+\left (1-2 t \right ) \left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} t^{n +r -1}\right )-\left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} t^{n +r}\right ) = 0 \end{equation} Which simplifies to \begin{equation} \tag{2A} \left (\moverset {\infty }{\munderset {n =0}{\sum }}2 t^{n +r -1} a_{n} \left (n +r \right ) \left (n +r -1\right )\right )+\moverset {\infty }{\munderset {n =0}{\sum }}\left (-2 t^{n +r} a_{n} \left (n +r \right )\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} t^{n +r -1}\right )+\moverset {\infty }{\munderset {n =0}{\sum }}\left (-a_{n} t^{n +r}\right ) = 0 \end{equation} The next step is to make all powers of \(t\) be \(n +r -1\) in each summation term. Going over each summation term above with power of \(t\) in it which is not already \(t^{n +r -1}\) and adjusting the power and the corresponding index gives \begin{align*} \moverset {\infty }{\munderset {n =0}{\sum }}\left (-2 t^{n +r} a_{n} \left (n +r \right )\right ) &= \moverset {\infty }{\munderset {n =1}{\sum }}\left (-2 a_{n -1} \left (n +r -1\right ) t^{n +r -1}\right ) \\ \moverset {\infty }{\munderset {n =0}{\sum }}\left (-a_{n} t^{n +r}\right ) &= \moverset {\infty }{\munderset {n =1}{\sum }}\left (-a_{n -1} t^{n +r -1}\right ) \\ \end{align*} Substituting all the above in Eq (2A) gives the following equation where now all powers of \(t\) are the same and equal to \(n +r -1\). \begin{equation} \tag{2B} \left (\moverset {\infty }{\munderset {n =0}{\sum }}2 t^{n +r -1} a_{n} \left (n +r \right ) \left (n +r -1\right )\right )+\moverset {\infty }{\munderset {n =1}{\sum }}\left (-2 a_{n -1} \left (n +r -1\right ) t^{n +r -1}\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} t^{n +r -1}\right )+\moverset {\infty }{\munderset {n =1}{\sum }}\left (-a_{n -1} t^{n +r -1}\right ) = 0 \end{equation} The indicial equation is obtained from \(n = 0\). From Eq (2B) this gives \[ 2 t^{n +r -1} a_{n} \left (n +r \right ) \left (n +r -1\right )+\left (n +r \right ) a_{n} t^{n +r -1} = 0 \] When \(n = 0\) the above becomes \[ 2 t^{-1+r} a_{0} r \left (-1+r \right )+r a_{0} t^{-1+r} = 0 \] Or \[ \left (2 t^{-1+r} r \left (-1+r \right )+r \,t^{-1+r}\right ) a_{0} = 0 \] Since \(a_{0}\neq 0\) then the above simplifies to \[ r \,t^{-1+r} \left (-1+2 r \right ) = 0 \] Since the above is true for all \(t\) then the indicial equation becomes \[ 2 r^{2}-r = 0 \] Solving for \(r\) gives the roots of the indicial equation as \begin {align*} r_1 &= {\frac {1}{2}}\\ r_2 &= 0 \end {align*}

Since \(a_{0}\neq 0\) then the indicial equation becomes \[ r \,t^{-1+r} \left (-1+2 r \right ) = 0 \] Solving for \(r\) gives the roots of the indicial equation as \(\left [{\frac {1}{2}}, 0\right ]\).

Since \(r_1 - r_2 = {\frac {1}{2}}\) is not an integer, then we can construct two linearly independent solutions \begin {align*} y_{1}\left (t \right ) &= t^{r_{1}} \left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} t^{n}\right )\\ y_{2}\left (t \right ) &= t^{r_{2}} \left (\moverset {\infty }{\munderset {n =0}{\sum }}b_{n} t^{n}\right ) \end {align*}

Or \begin {align*} y_{1}\left (t \right ) &= \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} t^{n +\frac {1}{2}}\\ y_{2}\left (t \right ) &= \moverset {\infty }{\munderset {n =0}{\sum }}b_{n} t^{n} \end {align*}

We start by finding \(y_{1}\left (t \right )\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n = 0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0} = 1\). For \(1\le n\) the recursive equation is \begin{equation} \tag{3} 2 a_{n} \left (n +r \right ) \left (n +r -1\right )-2 a_{n -1} \left (n +r -1\right )+a_{n} \left (n +r \right )-a_{n -1} = 0 \end{equation} Solving for \(a_{n}\) from recursive equation (4) gives \[ a_{n} = \frac {a_{n -1}}{n +r}\tag {4} \] Which for the root \(r = {\frac {1}{2}}\) becomes \[ a_{n} = \frac {2 a_{n -1}}{2 n +1}\tag {5} \] At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r = {\frac {1}{2}}\) and after as more terms are found using the above recursive equation.

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)

For \(n = 1\), using the above recursive equation gives \[ a_{1}=\frac {1}{1+r} \] Which for the root \(r = {\frac {1}{2}}\) becomes \[ a_{1}={\frac {2}{3}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(\frac {1}{1+r}\) \(\frac {2}{3}\)

For \(n = 2\), using the above recursive equation gives \[ a_{2}=\frac {1}{\left (1+r \right ) \left (2+r \right )} \] Which for the root \(r = {\frac {1}{2}}\) becomes \[ a_{2}={\frac {4}{15}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(\frac {1}{1+r}\) \(\frac {2}{3}\)
\(a_{2}\) \(\frac {1}{\left (1+r \right ) \left (2+r \right )}\) \(\frac {4}{15}\)

For \(n = 3\), using the above recursive equation gives \[ a_{3}=\frac {1}{\left (1+r \right ) \left (2+r \right ) \left (3+r \right )} \] Which for the root \(r = {\frac {1}{2}}\) becomes \[ a_{3}={\frac {8}{105}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(\frac {1}{1+r}\) \(\frac {2}{3}\)
\(a_{2}\) \(\frac {1}{\left (1+r \right ) \left (2+r \right )}\) \(\frac {4}{15}\)
\(a_{3}\) \(\frac {1}{\left (1+r \right ) \left (2+r \right ) \left (3+r \right )}\) \(\frac {8}{105}\)

For \(n = 4\), using the above recursive equation gives \[ a_{4}=\frac {1}{\left (1+r \right ) \left (2+r \right ) \left (3+r \right ) \left (4+r \right )} \] Which for the root \(r = {\frac {1}{2}}\) becomes \[ a_{4}={\frac {16}{945}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(\frac {1}{1+r}\) \(\frac {2}{3}\)
\(a_{2}\) \(\frac {1}{\left (1+r \right ) \left (2+r \right )}\) \(\frac {4}{15}\)
\(a_{3}\) \(\frac {1}{\left (1+r \right ) \left (2+r \right ) \left (3+r \right )}\) \(\frac {8}{105}\)
\(a_{4}\) \(\frac {1}{\left (1+r \right ) \left (2+r \right ) \left (3+r \right ) \left (4+r \right )}\) \(\frac {16}{945}\)

For \(n = 5\), using the above recursive equation gives \[ a_{5}=\frac {1}{\left (1+r \right ) \left (2+r \right ) \left (3+r \right ) \left (4+r \right ) \left (5+r \right )} \] Which for the root \(r = {\frac {1}{2}}\) becomes \[ a_{5}={\frac {32}{10395}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(\frac {1}{1+r}\) \(\frac {2}{3}\)
\(a_{2}\) \(\frac {1}{\left (1+r \right ) \left (2+r \right )}\) \(\frac {4}{15}\)
\(a_{3}\) \(\frac {1}{\left (1+r \right ) \left (2+r \right ) \left (3+r \right )}\) \(\frac {8}{105}\)
\(a_{4}\) \(\frac {1}{\left (1+r \right ) \left (2+r \right ) \left (3+r \right ) \left (4+r \right )}\) \(\frac {16}{945}\)
\(a_{5}\) \(\frac {1}{\left (1+r \right ) \left (2+r \right ) \left (3+r \right ) \left (4+r \right ) \left (5+r \right )}\) \(\frac {32}{10395}\)

Using the above table, then the solution \(y_{1}\left (t \right )\) is \begin {align*} y_{1}\left (t \right )&= \sqrt {t} \left (a_{0}+a_{1} t +a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}+a_{5} t^{5}+a_{6} t^{6}\dots \right ) \\ &= \sqrt {t}\, \left (1+\frac {2 t}{3}+\frac {4 t^{2}}{15}+\frac {8 t^{3}}{105}+\frac {16 t^{4}}{945}+\frac {32 t^{5}}{10395}+O\left (t^{6}\right )\right ) \end {align*}

Now the second solution \(y_{2}\left (t \right )\) is found. Eq (2B) derived above is now used to find all \(b_{n}\) coefficients. The case \(n = 0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0} = 1\). For \(1\le n\) the recursive equation is \begin{equation} \tag{3} 2 b_{n} \left (n +r \right ) \left (n +r -1\right )-2 b_{n -1} \left (n +r -1\right )+\left (n +r \right ) b_{n}-b_{n -1} = 0 \end{equation} Solving for \(b_{n}\) from recursive equation (4) gives \[ b_{n} = \frac {b_{n -1}}{n +r}\tag {4} \] Which for the root \(r = 0\) becomes \[ b_{n} = \frac {b_{n -1}}{n}\tag {5} \] At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r = 0\) and after as more terms are found using the above recursive equation.

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)

For \(n = 1\), using the above recursive equation gives \[ b_{1}=\frac {1}{1+r} \] Which for the root \(r = 0\) becomes \[ b_{1}=1 \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(\frac {1}{1+r}\) \(1\)

For \(n = 2\), using the above recursive equation gives \[ b_{2}=\frac {1}{\left (1+r \right ) \left (2+r \right )} \] Which for the root \(r = 0\) becomes \[ b_{2}={\frac {1}{2}} \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(\frac {1}{1+r}\) \(1\)
\(b_{2}\) \(\frac {1}{\left (1+r \right ) \left (2+r \right )}\) \(\frac {1}{2}\)

For \(n = 3\), using the above recursive equation gives \[ b_{3}=\frac {1}{\left (1+r \right ) \left (2+r \right ) \left (3+r \right )} \] Which for the root \(r = 0\) becomes \[ b_{3}={\frac {1}{6}} \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(\frac {1}{1+r}\) \(1\)
\(b_{2}\) \(\frac {1}{\left (1+r \right ) \left (2+r \right )}\) \(\frac {1}{2}\)
\(b_{3}\) \(\frac {1}{\left (1+r \right ) \left (2+r \right ) \left (3+r \right )}\) \(\frac {1}{6}\)

For \(n = 4\), using the above recursive equation gives \[ b_{4}=\frac {1}{\left (1+r \right ) \left (2+r \right ) \left (3+r \right ) \left (4+r \right )} \] Which for the root \(r = 0\) becomes \[ b_{4}={\frac {1}{24}} \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(\frac {1}{1+r}\) \(1\)
\(b_{2}\) \(\frac {1}{\left (1+r \right ) \left (2+r \right )}\) \(\frac {1}{2}\)
\(b_{3}\) \(\frac {1}{\left (1+r \right ) \left (2+r \right ) \left (3+r \right )}\) \(\frac {1}{6}\)
\(b_{4}\) \(\frac {1}{\left (1+r \right ) \left (2+r \right ) \left (3+r \right ) \left (4+r \right )}\) \(\frac {1}{24}\)

For \(n = 5\), using the above recursive equation gives \[ b_{5}=\frac {1}{\left (1+r \right ) \left (2+r \right ) \left (3+r \right ) \left (4+r \right ) \left (5+r \right )} \] Which for the root \(r = 0\) becomes \[ b_{5}={\frac {1}{120}} \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(\frac {1}{1+r}\) \(1\)
\(b_{2}\) \(\frac {1}{\left (1+r \right ) \left (2+r \right )}\) \(\frac {1}{2}\)
\(b_{3}\) \(\frac {1}{\left (1+r \right ) \left (2+r \right ) \left (3+r \right )}\) \(\frac {1}{6}\)
\(b_{4}\) \(\frac {1}{\left (1+r \right ) \left (2+r \right ) \left (3+r \right ) \left (4+r \right )}\) \(\frac {1}{24}\)
\(b_{5}\) \(\frac {1}{\left (1+r \right ) \left (2+r \right ) \left (3+r \right ) \left (4+r \right ) \left (5+r \right )}\) \(\frac {1}{120}\)

Using the above table, then the solution \(y_{2}\left (t \right )\) is \begin {align*} y_{2}\left (t \right )&= b_{0}+b_{1} t +b_{2} t^{2}+b_{3} t^{3}+b_{4} t^{4}+b_{5} t^{5}+b_{6} t^{6}\dots \\ &= 1+t +\frac {t^{2}}{2}+\frac {t^{3}}{6}+\frac {t^{4}}{24}+\frac {t^{5}}{120}+O\left (t^{6}\right ) \end {align*}

Therefore the homogeneous solution is \begin{align*} y_h(t) &= c_{1} y_{1}\left (t \right )+c_{2} y_{2}\left (t \right ) \\ &= c_{1} \sqrt {t}\, \left (1+\frac {2 t}{3}+\frac {4 t^{2}}{15}+\frac {8 t^{3}}{105}+\frac {16 t^{4}}{945}+\frac {32 t^{5}}{10395}+O\left (t^{6}\right )\right ) + c_{2} \left (1+t +\frac {t^{2}}{2}+\frac {t^{3}}{6}+\frac {t^{4}}{24}+\frac {t^{5}}{120}+O\left (t^{6}\right )\right ) \\ \end{align*} Hence the final solution is \begin{align*} y &= y_h \\ &= c_{1} \sqrt {t}\, \left (1+\frac {2 t}{3}+\frac {4 t^{2}}{15}+\frac {8 t^{3}}{105}+\frac {16 t^{4}}{945}+\frac {32 t^{5}}{10395}+O\left (t^{6}\right )\right )+c_{2} \left (1+t +\frac {t^{2}}{2}+\frac {t^{3}}{6}+\frac {t^{4}}{24}+\frac {t^{5}}{120}+O\left (t^{6}\right )\right ) \\ \end{align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= c_{1} \sqrt {t}\, \left (1+\frac {2 t}{3}+\frac {4 t^{2}}{15}+\frac {8 t^{3}}{105}+\frac {16 t^{4}}{945}+\frac {32 t^{5}}{10395}+O\left (t^{6}\right )\right )+c_{2} \left (1+t +\frac {t^{2}}{2}+\frac {t^{3}}{6}+\frac {t^{4}}{24}+\frac {t^{5}}{120}+O\left (t^{6}\right )\right ) \\ \end{align*}

Verification of solutions

\[ y = c_{1} \sqrt {t}\, \left (1+\frac {2 t}{3}+\frac {4 t^{2}}{15}+\frac {8 t^{3}}{105}+\frac {16 t^{4}}{945}+\frac {32 t^{5}}{10395}+O\left (t^{6}\right )\right )+c_{2} \left (1+t +\frac {t^{2}}{2}+\frac {t^{3}}{6}+\frac {t^{4}}{24}+\frac {t^{5}}{120}+O\left (t^{6}\right )\right ) \] Verified OK.

14.8.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & 2 t y^{\prime \prime }+\left (1-2 t \right ) y^{\prime }-y=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & y^{\prime \prime } \\ \bullet & {} & \textrm {Isolate 2nd derivative}\hspace {3pt} \\ {} & {} & y^{\prime \prime }=\frac {y}{2 t}+\frac {\left (-1+2 t \right ) y^{\prime }}{2 t} \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & y^{\prime \prime }-\frac {\left (-1+2 t \right ) y^{\prime }}{2 t}-\frac {y}{2 t}=0 \\ \square & {} & \textrm {Check to see if}\hspace {3pt} t_{0}=0\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & \circ & \textrm {Define functions}\hspace {3pt} \\ {} & {} & \left [P_{2}\left (t \right )=-\frac {-1+2 t}{2 t}, P_{3}\left (t \right )=-\frac {1}{2 t}\right ] \\ {} & \circ & t \cdot P_{2}\left (t \right )\textrm {is analytic at}\hspace {3pt} t =0 \\ {} & {} & \left (t \cdot P_{2}\left (t \right )\right )\bigg | {\mstack {}{_{t \hiderel {=}0}}}=\frac {1}{2} \\ {} & \circ & t^{2}\cdot P_{3}\left (t \right )\textrm {is analytic at}\hspace {3pt} t =0 \\ {} & {} & \left (t^{2}\cdot P_{3}\left (t \right )\right )\bigg | {\mstack {}{_{t \hiderel {=}0}}}=0 \\ {} & \circ & t =0\textrm {is a regular singular point}\hspace {3pt} \\ & {} & \textrm {Check to see if}\hspace {3pt} t_{0}=0\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & {} & t_{0}=0 \\ \bullet & {} & \textrm {Multiply by denominators}\hspace {3pt} \\ {} & {} & 2 t y^{\prime \prime }+\left (1-2 t \right ) y^{\prime }-y=0 \\ \bullet & {} & \textrm {Assume series solution for}\hspace {3pt} y \\ {} & {} & y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} t^{k +r} \\ \square & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & \circ & \textrm {Convert}\hspace {3pt} t^{m}\cdot y^{\prime }\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =0..1 \\ {} & {} & t^{m}\cdot y^{\prime }=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) t^{k +r -1+m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +1-m \\ {} & {} & t^{m}\cdot y^{\prime }=\moverset {\infty }{\munderset {k =-1+m}{\sum }}a_{k +1-m} \left (k +1-m +r \right ) t^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} t \cdot y^{\prime \prime }\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & t \cdot y^{\prime \prime }=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) \left (k +r -1\right ) t^{k +r -1} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +1 \\ {} & {} & t \cdot y^{\prime \prime }=\moverset {\infty }{\munderset {k =-1}{\sum }}a_{k +1} \left (k +1+r \right ) \left (k +r \right ) t^{k +r} \\ & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & {} & a_{0} r \left (-1+2 r \right ) t^{-1+r}+\left (\moverset {\infty }{\munderset {k =0}{\sum }}\left (a_{k +1} \left (k +1+r \right ) \left (2 k +2 r +1\right )-a_{k} \left (2 k +2 r +1\right )\right ) t^{k +r}\right )=0 \\ \bullet & {} & a_{0}\textrm {cannot be 0 by assumption, giving the indicial equation}\hspace {3pt} \\ {} & {} & r \left (-1+2 r \right )=0 \\ \bullet & {} & \textrm {Values of r that satisfy the indicial equation}\hspace {3pt} \\ {} & {} & r \in \left \{0, \frac {1}{2}\right \} \\ \bullet & {} & \textrm {Each term in the series must be 0, giving the recursion relation}\hspace {3pt} \\ {} & {} & 2 \left (k +r +\frac {1}{2}\right ) \left (a_{k +1} \left (k +1+r \right )-a_{k}\right )=0 \\ \bullet & {} & \textrm {Recursion relation that defines series solution to ODE}\hspace {3pt} \\ {} & {} & a_{k +1}=\frac {a_{k}}{k +1+r} \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =0 \\ {} & {} & a_{k +1}=\frac {a_{k}}{k +1} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =0 \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} t^{k}, a_{k +1}=\frac {a_{k}}{k +1}\right ] \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =\frac {1}{2} \\ {} & {} & a_{k +1}=\frac {a_{k}}{k +\frac {3}{2}} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =\frac {1}{2} \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} t^{k +\frac {1}{2}}, a_{k +1}=\frac {a_{k}}{k +\frac {3}{2}}\right ] \\ \bullet & {} & \textrm {Combine solutions and rename parameters}\hspace {3pt} \\ {} & {} & \left [y=\left (\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} t^{k}\right )+\left (\moverset {\infty }{\munderset {k =0}{\sum }}b_{k} t^{k +\frac {1}{2}}\right ), a_{1+k}=\frac {a_{k}}{1+k}, b_{1+k}=\frac {b_{k}}{k +\frac {3}{2}}\right ] \end {array} \]

Maple trace Kovacic algorithm successful

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
trying a symmetry of the form [xi=0, eta=F(x)] 
checking if the LODE is missing y 
-> Trying a Liouvillian solution using Kovacics algorithm 
   A Liouvillian solution exists 
   Reducible group (found an exponential solution) 
   Group is reducible, not completely reducible 
   Solution has integrals. Trying a special function solution free of integrals... 
   -> Trying a solution in terms of special functions: 
      -> Bessel 
      -> elliptic 
      -> Legendre 
      <- Kummer successful 
   <- special function solution successful 
      -> Trying to convert hypergeometric functions to elementary form... 
      <- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals 
   <- Kovacics algorithm successful`
 

Solution by Maple

Time used: 0.0 (sec). Leaf size: 44

Order:=6; 
dsolve(2*t*diff(y(t),t$2)+(1-2*t)*diff(y(t),t)-y(t)=0,y(t),type='series',t=0);
 

\[ y \left (t \right ) = c_{1} \sqrt {t}\, \left (1+\frac {2}{3} t +\frac {4}{15} t^{2}+\frac {8}{105} t^{3}+\frac {16}{945} t^{4}+\frac {32}{10395} t^{5}+\operatorname {O}\left (t^{6}\right )\right )+c_{2} \left (1+t +\frac {1}{2} t^{2}+\frac {1}{6} t^{3}+\frac {1}{24} t^{4}+\frac {1}{120} t^{5}+\operatorname {O}\left (t^{6}\right )\right ) \]

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 81

AsymptoticDSolveValue[2*t*y''[t]+(1-2*t)*y'[t]-y[t]==0,y[t],{t,0,5}]
 

\[ y(t)\to c_1 \sqrt {t} \left (\frac {32 t^5}{10395}+\frac {16 t^4}{945}+\frac {8 t^3}{105}+\frac {4 t^2}{15}+\frac {2 t}{3}+1\right )+c_2 \left (\frac {t^5}{120}+\frac {t^4}{24}+\frac {t^3}{6}+\frac {t^2}{2}+t+1\right ) \]