1.96 problem 119

1.96.1 Solving as homogeneousTypeD2 ode
1.96.2 Solving as dAlembert ode
1.96.3 Maple step by step solution

Internal problem ID [3241]
Internal file name [OUTPUT/2733_Sunday_June_05_2022_08_39_52_AM_49446695/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 119.
ODE order: 1.
ODE degree: 0.

The type(s) of ODE detected by this program : "dAlembert", "homogeneousTypeD2"

Maple gives the following as the ode type

[[_homogeneous, `class A`], _dAlembert]

\[ \boxed {y^{\prime }={\mathrm e}^{\frac {x y^{\prime }}{y}}} \]

1.96.1 Solving as homogeneousTypeD2 ode

Using the change of variables \(y = u \left (x \right ) x\) on the above ode results in new ode in \(u \left (x \right )\) \begin {align*} u^{\prime }\left (x \right ) x +u \left (x \right ) = {\mathrm e}^{\frac {\frac {d}{d x}\left (u \left (x \right ) x \right )}{u \left (x \right )}} \end {align*}

In canonical form the ODE is \begin {align*} u' &= F(x,u)\\ &= f( x) g(u)\\ &= \frac {-\operatorname {LambertW}\left (-\frac {1}{u}\right ) u -u}{x} \end {align*}

Where \(f(x)=\frac {1}{x}\) and \(g(u)=-\operatorname {LambertW}\left (-\frac {1}{u}\right ) u -u\). Integrating both sides gives \begin{align*} \frac {1}{-\operatorname {LambertW}\left (-\frac {1}{u}\right ) u -u} \,du &= \frac {1}{x} \,d x \\ \int { \frac {1}{-\operatorname {LambertW}\left (-\frac {1}{u}\right ) u -u} \,du} &= \int {\frac {1}{x} \,d x} \\ \ln \left (\operatorname {LambertW}\left (-\frac {1}{u}\right )\right )&=\ln \left (x \right )+c_{2} \\ \end{align*} Raising both side to exponential gives \begin {align*} \operatorname {LambertW}\left (-\frac {1}{u}\right ) &= {\mathrm e}^{\ln \left (x \right )+c_{2}} \end {align*}

Which simplifies to \begin {align*} \operatorname {LambertW}\left (-\frac {1}{u}\right ) &= c_{3} x \end {align*}

Therefore the solution \(y\) is \begin {align*} y&=x u\\ &=-\frac {{\mathrm e}^{-c_{2}} {\mathrm e}^{-c_{3} {\mathrm e}^{c_{2}} x}}{c_{3}} \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= -\frac {{\mathrm e}^{-c_{2}} {\mathrm e}^{-c_{3} {\mathrm e}^{c_{2}} x}}{c_{3}} \\ \end{align*}

Figure 129: Slope field plot

Verification of solutions

\[ y = -\frac {{\mathrm e}^{-c_{2}} {\mathrm e}^{-c_{3} {\mathrm e}^{c_{2}} x}}{c_{3}} \] Verified OK.

1.96.2 Solving as dAlembert ode

Let \(p=y^{\prime }\) the ode becomes \begin {align*} p = {\mathrm e}^{\frac {x p}{y}} \end {align*}

Solving for \(y\) from the above results in \begin {align*} y &= \frac {x p}{\ln \left (p \right )}\tag {1A} \end {align*}

This has the form \begin {align*} y=xf(p)+g(p)\tag {*} \end {align*}

Where \(f,g\) are functions of \(p=y'(x)\). The above ode is dAlembert ode which is now solved. Taking derivative of (*) w.r.t. \(x\) gives \begin {align*} p &= f+(x f'+g') \frac {dp}{dx}\\ p-f &= (x f'+g') \frac {dp}{dx}\tag {2} \end {align*}

Comparing the form \(y=x f + g\) to (1A) shows that \begin {align*} f &= \frac {p}{\ln \left (p \right )}\\ g &= 0 \end {align*}

Hence (2) becomes \begin {align*} p -\frac {p}{\ln \left (p \right )} = x \left (\frac {1}{\ln \left (p \right )}-\frac {1}{\ln \left (p \right )^{2}}\right ) p^{\prime }\left (x \right )\tag {2A} \end {align*}

The singular solution is found by setting \(\frac {dp}{dx}=0\) in the above which gives \begin {align*} p -\frac {p}{\ln \left (p \right )} = 0 \end {align*}

Solving for \(p\) from the above gives \begin {align*} p&={\mathrm e} \end {align*}

Substituting these in (1A) gives \begin {align*} y&={\mathrm e} x \end {align*}

The general solution is found when \( \frac { \mathop {\mathrm {d}p}}{\mathop {\mathrm {d}x}}\neq 0\). From eq. (2A). This results in \begin {align*} p^{\prime }\left (x \right ) = \frac {p \left (x \right )-\frac {p \left (x \right )}{\ln \left (p \left (x \right )\right )}}{x \left (\frac {1}{\ln \left (p \left (x \right )\right )}-\frac {1}{\ln \left (p \left (x \right )\right )^{2}}\right )}\tag {3} \end {align*}

This ODE is now solved for \(p \left (x \right )\). In canonical form the ODE is \begin {align*} p' &= F(x,p)\\ &= f( x) g(p)\\ &= \frac {\ln \left (p \right ) p}{x} \end {align*}

Where \(f(x)=\frac {1}{x}\) and \(g(p)=\ln \left (p \right ) p\). Integrating both sides gives \begin{align*} \frac {1}{\ln \left (p \right ) p} \,dp &= \frac {1}{x} \,d x \\ \int { \frac {1}{\ln \left (p \right ) p} \,dp} &= \int {\frac {1}{x} \,d x} \\ \ln \left (\ln \left (p \right )\right )&=\ln \left (x \right )+c_{1} \\ \end{align*} Raising both side to exponential gives \begin {align*} \ln \left (p \right ) &= {\mathrm e}^{\ln \left (x \right )+c_{1}} \end {align*}

Which simplifies to \begin {align*} \ln \left (p \right ) &= c_{2} x \end {align*}

Substituing the above solution for \(p\) in (2A) gives \begin {align*} y = \frac {x \,{\mathrm e}^{c_{2} x \,{\mathrm e}^{c_{1}}}}{\ln \left ({\mathrm e}^{c_{2} x \,{\mathrm e}^{c_{1}}}\right )}\\ \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= {\mathrm e} x \\ \tag{2} y &= \frac {x \,{\mathrm e}^{c_{2} x \,{\mathrm e}^{c_{1}}}}{\ln \left ({\mathrm e}^{c_{2} x \,{\mathrm e}^{c_{1}}}\right )} \\ \end{align*}

Figure 130: Slope field plot

Verification of solutions

\[ y = {\mathrm e} x \] Verified OK.

\[ y = \frac {x \,{\mathrm e}^{c_{2} x \,{\mathrm e}^{c_{1}}}}{\ln \left ({\mathrm e}^{c_{2} x \,{\mathrm e}^{c_{1}}}\right )} \] Verified OK.

1.96.3 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & y^{\prime }={\mathrm e}^{\frac {x y^{\prime }}{y}} \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & y^{\prime }=-\frac {y \mathit {LambertW}\left (-\frac {x}{y}\right )}{x} \end {array} \]

Maple trace

`Methods for first order ODEs: 
-> Solving 1st order ODE of high degree, 1st attempt 
trying 1st order WeierstrassP solution for high degree ODE 
trying 1st order WeierstrassPPrime solution for high degree ODE 
trying 1st order JacobiSN solution for high degree ODE 
trying 1st order ODE linearizable_by_differentiation 
trying differential order: 1; missing variables 
trying homogeneous B 
trying homogeneous types: 
trying homogeneous D 
<- homogeneous successful`
 

Solution by Maple

Time used: 0.047 (sec). Leaf size: 14

dsolve(diff(y(x),x)=exp(x*diff(y(x),x)/y(x)),y(x), singsol=all)
 

\[ y \left (x \right ) = -\frac {{\mathrm e}^{-c_{1} x}}{c_{1}} \]

Solution by Mathematica

Time used: 0.078 (sec). Leaf size: 21

DSolve[y'[x]==Exp[x*y'[x]/y[x]],y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to -e^{c_1-e^{-c_1} x} \]