Internal
problem
ID
[18222] Book
:
Elementary
Differential
Equations.
By
Thornton
C.
Fry.
D
Van
Nostrand.
NY.
First
Edition
(1929) Section
:
Chapter
IV.
Methods
of
solution:
First
order
equations.
section
29.
Problems
at
page
81 Problem
number
:
2 Date
solved
:
Friday, December 20, 2024 at 10:20:09 AM CAS
classification
:
[[_homogeneous, `class A`], _rational, _Bernoulli]
An ode of the form \(y' = \frac {M(x,y)}{N(x,y)}\) is called homogeneous if the functions \(M(x,y)\) and \(N(x,y)\) are both homogeneous
functions and of the same order. Recall that a function \(f(x,y)\) is homogeneous of order \(n\) if
\[ f(t^n x, t^n y)= t^n f(x,y) \]
In this
case, it can be seen that both \(M=y \left (2 x^{2}+y^{2}\right )\) and \(N=x^{3}\) are both homogeneous and of the same order \(n=3\). Therefore
this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE
using the substitution \(u=\frac {y}{x}\), or \(y=ux\). Hence
Which is now solved as separable in \(u \left (x \right )\).
The ode \(u^{\prime }\left (x \right ) = \frac {u \left (x \right ) \left (u \left (x \right )^{2}+1\right )}{x}\) is separable as it can be written as
We now need to find the singular solutions, these are found by finding for what values \(g(u)\) is
zero, since we had to divide by this above. Solving \(g(u)=0\) or \(u \left (u^{2}+1\right )=0\) for \(u \left (x \right )\) gives
\begin{align*} u \left (x \right )&=0\\ u \left (x \right )&=-i\\ u \left (x \right )&=i \end{align*}
Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be
used.
\begin{align*}
y &= 0 \\
y &= -i x \\
y &= i x \\
y &= \frac {x^{2} {\mathrm e}^{c_1}}{\sqrt {1-x^{2} {\mathrm e}^{2 c_1}}} \\
y &= -\frac {x^{2} {\mathrm e}^{c_1}}{\sqrt {1-x^{2} {\mathrm e}^{2 c_1}}} \\
\end{align*}
Solved as first order homogeneous class D2 ode
Time used: 0.170 (sec)
Applying change of variables \(y = u \left (x \right ) x\), then the ode becomes
Which is now solved The ode \(u^{\prime }\left (x \right ) = \frac {u \left (x \right ) \left (u \left (x \right )^{2}+1\right )}{x}\) is separable as it can be written as
We now need to find the singular solutions, these are found by finding for what values \(g(u)\) is
zero, since we had to divide by this above. Solving \(g(u)=0\) or \(u \left (u^{2}+1\right )=0\) for \(u \left (x \right )\) gives
\begin{align*} u \left (x \right )&=0\\ u \left (x \right )&=-i\\ u \left (x \right )&=i \end{align*}
Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be
used.
\begin{align*}
y &= 0 \\
y &= -i x \\
y &= i x \\
y &= \frac {x^{2} {\mathrm e}^{c_1}}{\sqrt {1-x^{2} {\mathrm e}^{2 c_1}}} \\
y &= -\frac {x^{2} {\mathrm e}^{c_1}}{\sqrt {1-x^{2} {\mathrm e}^{2 c_1}}} \\
\end{align*}
Summary of solutions found
\begin{align*}
y &= 0 \\
y &= -i x \\
y &= i x \\
y &= \frac {x^{2} {\mathrm e}^{c_1}}{\sqrt {1-x^{2} {\mathrm e}^{2 c_1}}} \\
y &= -\frac {x^{2} {\mathrm e}^{c_1}}{\sqrt {1-x^{2} {\mathrm e}^{2 c_1}}} \\
\end{align*}
Solved as first order homogeneous class Maple C ode
Time used: 0.674 (sec)
Let \(Y = y -y_{0}\) and \(X = x -x_{0}\) then the above is transformed to new ode in \(Y(X)\)
An ode of the form \(Y' = \frac {M(X,Y)}{N(X,Y)}\) is called homogeneous if the functions \(M(X,Y)\) and \(N(X,Y)\) are both homogeneous
functions and of the same order. Recall that a function \(f(X,Y)\) is homogeneous of order \(n\) if
\[ f(t^n X, t^n Y)= t^n f(X,Y) \]
In this
case, it can be seen that both \(M=Y \left (2 X^{2}+Y^{2}\right )\) and \(N=X^{3}\) are both homogeneous and of the same order \(n=3\). Therefore
this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE
using the substitution \(u=\frac {Y}{X}\), or \(Y=uX\). Hence
Which is now solved as separable in \(u \left (X \right )\).
The ode \(\frac {d}{d X}u \left (X \right ) = \frac {u \left (X \right ) \left (u \left (X \right )^{2}+1\right )}{X}\) is separable as it can be written as
We now need to find the singular solutions, these are found by finding for what values \(g(u)\) is
zero, since we had to divide by this above. Solving \(g(u)=0\) or \(u \left (u^{2}+1\right )=0\) for \(u \left (X \right )\) gives
\begin{align*} u \left (X \right )&=0\\ u \left (X \right )&=-i\\ u \left (X \right )&=i \end{align*}
Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be
used.
The next step is use the
substitution \(v = y^{1-n}\) in equation (3) which generates a new ODE in \(v \left (x \right )\) which will be linear and can be
easily solved using an integrating factor. Backsubstitution then gives the solution \(y(x)\) which is
what we want.
This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows
that
\begin{align*} f_0(x)&=\frac {2}{x}\\ f_1(x)&=\frac {1}{x^{3}}\\ n &=3 \end{align*}
Dividing both sides of ODE (1) by \(y^n=y^{3}\) gives
The ode \(u^{\prime }\left (x \right ) = \frac {u \left (x \right ) \left (u \left (x \right )^{2}+1\right )}{x}\) is
separable as it can be written as
We now need to find the singular solutions, these are found by finding for what values \(g(u)\) is
zero, since we had to divide by this above. Solving \(g(u)=0\) or \(u \left (u^{2}+1\right )=0\) for \(u \left (x \right )\) gives
\begin{align*} u \left (x \right )&=0\\ u \left (x \right )&=-i\\ u \left (x \right )&=i \end{align*}
Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be
used.
\begin{align*}
y &= 0 \\
y &= -i x \\
y &= i x \\
y &= \frac {x^{2} {\mathrm e}^{c_1}}{\sqrt {1-x^{2} {\mathrm e}^{2 c_1}}} \\
y &= -\frac {x^{2} {\mathrm e}^{c_1}}{\sqrt {1-x^{2} {\mathrm e}^{2 c_1}}} \\
\end{align*}
Summary of solutions found
\begin{align*}
y &= 0 \\
y &= -i x \\
y &= i x \\
y &= \frac {x^{2} {\mathrm e}^{c_1}}{\sqrt {1-x^{2} {\mathrm e}^{2 c_1}}} \\
y &= -\frac {x^{2} {\mathrm e}^{c_1}}{\sqrt {1-x^{2} {\mathrm e}^{2 c_1}}} \\
\end{align*}
The next step is to determine the canonical coordinates \(R,S\). The canonical coordinates map \(\left ( x,y\right ) \to \left ( R,S \right )\)
where \(\left ( R,S \right )\) are the canonical coordinates which make the original ode become a quadrature and
hence solved by integration.
The characteristic pde which is used to find the canonical coordinates is
The above comes from the requirements that \(\left ( \xi \frac {\partial }{\partial x} + \eta \frac {\partial }{\partial y}\right ) S(x,y) = 1\). Starting with the first pair of ode’s in (1)
gives an ode to solve for the independent variable \(R\) in the canonical coordinates, where \(S(R)\). Since
\(\xi =0\) then in this special case
\begin{align*} R = x \end{align*}
\(S\) is found from
\begin{align*} S &= \int { \frac {1}{\eta }} dy\\ &= \int { \frac {1}{\frac {-x^{2} y -y^{3}}{x^{2}}}} dy \end{align*}
We now need to express the RHS as function of \(R\) only. This is done by solving for \(x,y\) in terms of
\(R,S\) from the result obtained earlier and simplifying. This gives
The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts
an ode, no matter how complicated it is, to one that can be solved by integration when the
ode is in the canonical coordiates \(R,S\).
Since the ode has the form \(\frac {d}{d R}S \left (R \right )=f(R)\), then we only need to integrate \(f(R)\).
Comparing the form \(y=x f + g\) to (1A) shows that
\begin{align*} f &= \frac {\left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{2}/{3}}-24}{6 \left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{1}/{3}}}\\ g &= 0 \end{align*}
Hence (2) becomes
\begin{align*} p -\frac {\left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{2}/{3}}-24}{6 \left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{1}/{3}}} = \left (\frac {6 x}{\left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{2}/{3}}}+\frac {54 x p}{\left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{2}/{3}} \sqrt {81 p^{2}+96}}+\frac {144 x}{\left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{4}/{3}}}+\frac {1296 x p}{\left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{4}/{3}} \sqrt {81 p^{2}+96}}\right ) p^{\prime }\left (x \right )\tag {2A} \end{align*}
The singular solution is found by setting \(\frac {dp}{dx}=0\) in the above which gives
\begin{align*} p -\frac {\left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{2}/{3}}-24}{6 \left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{1}/{3}}} = 0 \end{align*}
Solving the above for \(p\) results in
\begin{align*} p_{1} &=0 \end{align*}
Substituting these in (1A) and keeping singular solution that verifies the ode gives
\begin{align*} y = 0 \end{align*}
The general solution is found when \( \frac { \mathop {\mathrm {d}p}}{\mathop {\mathrm {d}x}}\neq 0\). From eq. (2A). This results in
\begin{align*} p^{\prime }\left (x \right ) = \frac {p \left (x \right )-\frac {\left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{2}/{3}}-24}{6 \left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{1}/{3}}}}{\frac {6 x}{\left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{2}/{3}}}+\frac {54 x p \left (x \right )}{\left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{2}/{3}} \sqrt {81 p \left (x \right )^{2}+96}}+\frac {144 x}{\left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{4}/{3}}}+\frac {1296 x p \left (x \right )}{\left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{4}/{3}} \sqrt {81 p \left (x \right )^{2}+96}}}\tag {3} \end{align*}
This ODE is now solved for \(p \left (x \right )\). No inversion is needed. The ode \(p^{\prime }\left (x \right ) = -\frac {\sqrt {81 p \left (x \right )^{2}+96}\, \left (\left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{2}/{3}}-6 p \left (x \right ) \left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{1}/{3}}-24\right )}{3 \left (\left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{2}/{3}}+24\right ) x}\) is separable as it can be
written as
\begin{align*} p^{\prime }\left (x \right )&= -\frac {\sqrt {81 p \left (x \right )^{2}+96}\, \left (\left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{2}/{3}}-6 p \left (x \right ) \left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{1}/{3}}-24\right )}{3 \left (\left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{2}/{3}}+24\right ) x}\\ &= f(x) g(p) \end{align*}
Where
\begin{align*} f(x) &= -\frac {1}{3 x}\\ g(p) &= \frac {\sqrt {81 p^{2}+96}\, \left (\left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{2}/{3}}-6 p \left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{1}/{3}}-24\right )}{\left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{2}/{3}}+24} \end{align*}
We now need to find the singular solutions, these are found by finding for what values \(g(p)\) is
zero, since we had to divide by this above. Solving \(g(p)=0\) or \(\frac {\sqrt {81 p^{2}+96}\, \left (\left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{2}/{3}}-6 p \left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{1}/{3}}-24\right )}{\left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{2}/{3}}+24}=0\) for \(p \left (x \right )\) gives
\begin{align*} p \left (x \right )&=0\\ p \left (x \right )&=-\frac {4 i \sqrt {6}}{9}\\ p \left (x \right )&=\frac {4 i \sqrt {6}}{9} \end{align*}
Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be
used.
Comparing the form \(y=x f + g\) to (1A) shows that
\begin{align*} f &= \frac {\left (i \sqrt {3}-1\right ) \left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{2}/{3}}+24 i \sqrt {3}+24}{12 \left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{1}/{3}}}\\ g &= 0 \end{align*}
Hence (2) becomes
\begin{align*} p -\frac {\left (i \sqrt {3}-1\right ) \left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{2}/{3}}+24 i \sqrt {3}+24}{12 \left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{1}/{3}}} = \left (\frac {3 i x \sqrt {3}}{\left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{2}/{3}}}+\frac {27 i x \sqrt {3}\, p}{\left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{2}/{3}} \sqrt {81 p^{2}+96}}-\frac {3 x}{\left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{2}/{3}}}-\frac {27 x p}{\left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{2}/{3}} \sqrt {81 p^{2}+96}}-\frac {72 i x \sqrt {3}}{\left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{4}/{3}}}-\frac {648 i x \sqrt {3}\, p}{\left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{4}/{3}} \sqrt {81 p^{2}+96}}-\frac {72 x}{\left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{4}/{3}}}-\frac {648 x p}{\left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{4}/{3}} \sqrt {81 p^{2}+96}}\right ) p^{\prime }\left (x \right )\tag {2A} \end{align*}
The singular solution is found by setting \(\frac {dp}{dx}=0\) in the above which gives
\begin{align*} p -\frac {\left (i \sqrt {3}-1\right ) \left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{2}/{3}}+24 i \sqrt {3}+24}{12 \left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{1}/{3}}} = 0 \end{align*}
Solving the above for \(p\) results in
\begin{align*} p_{1} &=\frac {i \left (3 i \sqrt {3}-3+3 \sqrt {30+30 i \sqrt {3}}\right ) \sqrt {3}+21 i \sqrt {3}+27-3 \sqrt {30+30 i \sqrt {3}}}{12 \sqrt {3 i \sqrt {3}-3+3 \sqrt {30+30 i \sqrt {3}}}} \end{align*}
Substituting these in (1A) and keeping singular solution that verifies the ode gives
\begin{align*} y = i x \end{align*}
The general solution is found when \( \frac { \mathop {\mathrm {d}p}}{\mathop {\mathrm {d}x}}\neq 0\). From eq. (2A). This results in
\begin{align*} p^{\prime }\left (x \right ) = \frac {p \left (x \right )-\frac {\left (i \sqrt {3}-1\right ) \left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{2}/{3}}+24 i \sqrt {3}+24}{12 \left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{1}/{3}}}}{\frac {3 i x \sqrt {3}}{\left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{2}/{3}}}+\frac {27 i x \sqrt {3}\, p \left (x \right )}{\left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{2}/{3}} \sqrt {81 p \left (x \right )^{2}+96}}-\frac {3 x}{\left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{2}/{3}}}-\frac {27 x p \left (x \right )}{\left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{2}/{3}} \sqrt {81 p \left (x \right )^{2}+96}}-\frac {72 i x \sqrt {3}}{\left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{4}/{3}}}-\frac {648 i x \sqrt {3}\, p \left (x \right )}{\left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{4}/{3}} \sqrt {81 p \left (x \right )^{2}+96}}-\frac {72 x}{\left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{4}/{3}}}-\frac {648 x p \left (x \right )}{\left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{4}/{3}} \sqrt {81 p \left (x \right )^{2}+96}}}\tag {3} \end{align*}
This ODE is now solved for \(p \left (x \right )\). No inversion is needed. The ode \(p^{\prime }\left (x \right ) = -\frac {\sqrt {81 p \left (x \right )^{2}+96}\, \left (\sqrt {3}\, \left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{2}/{3}}+24 \sqrt {3}+12 i p \left (x \right ) \left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{1}/{3}}+i \left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{2}/{3}}-24 i\right )}{3 \left (\sqrt {3}\, \left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{2}/{3}}-24 \sqrt {3}+i \left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{2}/{3}}+24 i\right ) x}\) is separable as it can be
written as
\begin{align*} p^{\prime }\left (x \right )&= -\frac {\sqrt {81 p \left (x \right )^{2}+96}\, \left (\sqrt {3}\, \left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{2}/{3}}+24 \sqrt {3}+12 i p \left (x \right ) \left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{1}/{3}}+i \left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{2}/{3}}-24 i\right )}{3 \left (\sqrt {3}\, \left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{2}/{3}}-24 \sqrt {3}+i \left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{2}/{3}}+24 i\right ) x}\\ &= f(x) g(p) \end{align*}
Where
\begin{align*} f(x) &= -\frac {1}{3 x}\\ g(p) &= \frac {\sqrt {81 p^{2}+96}\, \left (\sqrt {3}\, \left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{2}/{3}}+24 \sqrt {3}+12 i p \left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{1}/{3}}+i \left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{2}/{3}}-24 i\right )}{\sqrt {3}\, \left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{2}/{3}}-24 \sqrt {3}+i \left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{2}/{3}}+24 i} \end{align*}
We now need to find the singular solutions, these are found by finding for what values \(g(p)\) is
zero, since we had to divide by this above. Solving \(g(p)=0\) or \(\frac {\sqrt {81 p^{2}+96}\, \left (\sqrt {3}\, \left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{2}/{3}}+24 \sqrt {3}+12 i p \left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{1}/{3}}+i \left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{2}/{3}}-24 i\right )}{\sqrt {3}\, \left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{2}/{3}}-24 \sqrt {3}+i \left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{2}/{3}}+24 i}=0\) for \(p \left (x \right )\) gives
\begin{align*} p \left (x \right )&=-\frac {4 i \sqrt {6}}{9}\\ p \left (x \right )&=\frac {4 i \sqrt {6}}{9}\\ p \left (x \right )&=\frac {i \left (3 i \sqrt {3}-3+3 \sqrt {30+30 i \sqrt {3}}\right ) \sqrt {3}+21 i \sqrt {3}+27-3 \sqrt {30+30 i \sqrt {3}}}{12 \sqrt {3 i \sqrt {3}-3+3 \sqrt {30+30 i \sqrt {3}}}} \end{align*}
Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be
used.
Comparing the form \(y=x f + g\) to (1A) shows that
\begin{align*} f &= -\frac {\left (1+i \sqrt {3}\right ) \left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{2}/{3}}+24 i \sqrt {3}-24}{12 \left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{1}/{3}}}\\ g &= 0 \end{align*}
Hence (2) becomes
\begin{align*} p +\frac {\left (1+i \sqrt {3}\right ) \left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{2}/{3}}+24 i \sqrt {3}-24}{12 \left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{1}/{3}}} = \left (-\frac {3 x}{\left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{2}/{3}}}-\frac {27 x p}{\left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{2}/{3}} \sqrt {81 p^{2}+96}}-\frac {3 i x \sqrt {3}}{\left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{2}/{3}}}-\frac {27 i x \sqrt {3}\, p}{\left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{2}/{3}} \sqrt {81 p^{2}+96}}+\frac {72 i x \sqrt {3}}{\left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{4}/{3}}}+\frac {648 i x \sqrt {3}\, p}{\left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{4}/{3}} \sqrt {81 p^{2}+96}}-\frac {72 x}{\left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{4}/{3}}}-\frac {648 x p}{\left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{4}/{3}} \sqrt {81 p^{2}+96}}\right ) p^{\prime }\left (x \right )\tag {2A} \end{align*}
The singular solution is found by setting \(\frac {dp}{dx}=0\) in the above which gives
\begin{align*} p +\frac {\left (1+i \sqrt {3}\right ) \left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{2}/{3}}+24 i \sqrt {3}-24}{12 \left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{1}/{3}}} = 0 \end{align*}
Solving the above for \(p\) results in
\begin{align*} p_{1} &=-\frac {i \left (-3 i \sqrt {3}-3+3 \sqrt {30-30 i \sqrt {3}}\right ) \sqrt {3}+21 i \sqrt {3}-27+3 \sqrt {30-30 i \sqrt {3}}}{12 \sqrt {-3 i \sqrt {3}-3+3 \sqrt {30-30 i \sqrt {3}}}} \end{align*}
Substituting these in (1A) and keeping singular solution that verifies the ode gives
\begin{align*} y = -i x \end{align*}
The general solution is found when \( \frac { \mathop {\mathrm {d}p}}{\mathop {\mathrm {d}x}}\neq 0\). From eq. (2A). This results in
\begin{align*} p^{\prime }\left (x \right ) = \frac {p \left (x \right )+\frac {\left (1+i \sqrt {3}\right ) \left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{2}/{3}}+24 i \sqrt {3}-24}{12 \left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{1}/{3}}}}{-\frac {3 x}{\left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{2}/{3}}}-\frac {27 x p \left (x \right )}{\left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{2}/{3}} \sqrt {81 p \left (x \right )^{2}+96}}-\frac {3 i x \sqrt {3}}{\left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{2}/{3}}}-\frac {27 i x \sqrt {3}\, p \left (x \right )}{\left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{2}/{3}} \sqrt {81 p \left (x \right )^{2}+96}}+\frac {72 i x \sqrt {3}}{\left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{4}/{3}}}+\frac {648 i x \sqrt {3}\, p \left (x \right )}{\left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{4}/{3}} \sqrt {81 p \left (x \right )^{2}+96}}-\frac {72 x}{\left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{4}/{3}}}-\frac {648 x p \left (x \right )}{\left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{4}/{3}} \sqrt {81 p \left (x \right )^{2}+96}}}\tag {3} \end{align*}
This ODE is now solved for \(p \left (x \right )\). No inversion is needed. The ode \(p^{\prime }\left (x \right ) = -\frac {\left (\sqrt {3}\, \left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{2}/{3}}+24 \sqrt {3}-12 i p \left (x \right ) \left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{1}/{3}}-i \left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{2}/{3}}+24 i\right ) \sqrt {81 p \left (x \right )^{2}+96}}{3 x \left (\sqrt {3}\, \left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{2}/{3}}-24 \sqrt {3}-i \left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{2}/{3}}-24 i\right )}\) is separable as it can be
written as
\begin{align*} p^{\prime }\left (x \right )&= -\frac {\left (\sqrt {3}\, \left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{2}/{3}}+24 \sqrt {3}-12 i p \left (x \right ) \left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{1}/{3}}-i \left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{2}/{3}}+24 i\right ) \sqrt {81 p \left (x \right )^{2}+96}}{3 x \left (\sqrt {3}\, \left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{2}/{3}}-24 \sqrt {3}-i \left (108 p \left (x \right )+12 \sqrt {81 p \left (x \right )^{2}+96}\right )^{{2}/{3}}-24 i\right )}\\ &= f(x) g(p) \end{align*}
Where
\begin{align*} f(x) &= -\frac {1}{3 x}\\ g(p) &= \frac {\left (\sqrt {3}\, \left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{2}/{3}}+24 \sqrt {3}-12 i p \left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{1}/{3}}-i \left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{2}/{3}}+24 i\right ) \sqrt {81 p^{2}+96}}{\sqrt {3}\, \left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{2}/{3}}-24 \sqrt {3}-i \left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{2}/{3}}-24 i} \end{align*}
We now need to find the singular solutions, these are found by finding for what values \(g(p)\) is
zero, since we had to divide by this above. Solving \(g(p)=0\) or \(\frac {\left (\sqrt {3}\, \left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{2}/{3}}+24 \sqrt {3}-12 i p \left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{1}/{3}}-i \left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{2}/{3}}+24 i\right ) \sqrt {81 p^{2}+96}}{\sqrt {3}\, \left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{2}/{3}}-24 \sqrt {3}-i \left (108 p +12 \sqrt {81 p^{2}+96}\right )^{{2}/{3}}-24 i}=0\) for \(p \left (x \right )\) gives
\begin{align*} p \left (x \right )&=-\frac {4 i \sqrt {6}}{9}\\ p \left (x \right )&=\frac {4 i \sqrt {6}}{9}\\ p \left (x \right )&=-\frac {i \left (-3 i \sqrt {3}-3+3 \sqrt {30-30 i \sqrt {3}}\right ) \sqrt {3}+21 i \sqrt {3}-27+3 \sqrt {30-30 i \sqrt {3}}}{12 \sqrt {-3 i \sqrt {3}-3+3 \sqrt {30-30 i \sqrt {3}}}} \end{align*}
Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be
used.