2.3.4 problem 4
Internal
problem
ID
[18224]
Book
:
Elementary
Differential
Equations.
By
Thornton
C.
Fry.
D
Van
Nostrand.
NY.
First
Edition
(1929)
Section
:
Chapter
IV.
Methods
of
solution:
First
order
equations.
section
29.
Problems
at
page
81
Problem
number
:
4
Date
solved
:
Friday, December 20, 2024 at 10:45:27 AM
CAS
classification
:
[_separable]
Solve
\begin{align*} \sec \left (x \right )^{2} \tan \left (y\right ) y^{\prime }+\sec \left (y\right )^{2} \tan \left (x \right )&=0 \end{align*}
Solved as first order separable ode
Time used: 0.308 (sec)
The ode \(y^{\prime } = -\frac {\sec \left (y\right )^{2} \tan \left (x \right )}{\sec \left (x \right )^{2} \tan \left (y\right )}\) is separable as it can be written as
\begin{align*} y^{\prime }&= -\frac {\sec \left (y\right )^{2} \tan \left (x \right )}{\sec \left (x \right )^{2} \tan \left (y\right )}\\ &= f(x) g(y) \end{align*}
Where
\begin{align*} f(x) &= -\frac {\tan \left (x \right )}{\sec \left (x \right )^{2}}\\ g(y) &= \frac {\sec \left (y \right )^{2}}{\tan \left (y \right )} \end{align*}
Integrating gives
\begin{align*} \int { \frac {1}{g(y)} \,dy} &= \int { f(x) \,dx}\\ \int { \frac {\tan \left (y \right )}{\sec \left (y \right )^{2}}\,dy} &= \int { -\frac {\tan \left (x \right )}{\sec \left (x \right )^{2}} \,dx}\\ -\frac {\cos \left (y\right )^{2}}{2}&=\frac {\cos \left (x \right )^{2}}{2}+c_1 \end{align*}
Solving for \(y\) gives
\begin{align*}
y &= \pi -\arccos \left (\sqrt {-\cos \left (x \right )^{2}-2 c_1}\right ) \\
y &= \arccos \left (\sqrt {-\cos \left (x \right )^{2}-2 c_1}\right ) \\
\end{align*}
Figure 2.31: Slope field plot
\(\sec \left (x \right )^{2} \tan \left (y\right ) y^{\prime }+\sec \left (y\right )^{2} \tan \left (x \right ) = 0\)
Summary of solutions found
\begin{align*}
y &= \pi -\arccos \left (\sqrt {-\cos \left (x \right )^{2}-2 c_1}\right ) \\
y &= \arccos \left (\sqrt {-\cos \left (x \right )^{2}-2 c_1}\right ) \\
\end{align*}
Maple step by step solution
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \sec \left (x \right )^{2} \tan \left (y\right ) y^{\prime }+\sec \left (y\right )^{2} \tan \left (x \right )=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & y^{\prime }=-\frac {\sec \left (y\right )^{2} \tan \left (x \right )}{\sec \left (x \right )^{2} \tan \left (y\right )} \\ \bullet & {} & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {y^{\prime } \tan \left (y\right )}{\sec \left (y\right )^{2}}=-\frac {\tan \left (x \right )}{\sec \left (x \right )^{2}} \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int \frac {y^{\prime } \tan \left (y\right )}{\sec \left (y\right )^{2}}d x =\int -\frac {\tan \left (x \right )}{\sec \left (x \right )^{2}}d x +\mathit {C1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & -\frac {1}{2 \sec \left (y\right )^{2}}=\frac {1}{2 \sec \left (x \right )^{2}}+\mathit {C1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} y \\ {} & {} & \left \{y=\pi -\mathrm {arcsec}\left (\frac {1}{\sqrt {-\cos \left (x \right )^{2}-2 \mathit {C1}}}\right ), y=\mathrm {arcsec}\left (\frac {1}{\sqrt {-\cos \left (x \right )^{2}-2 \mathit {C1}}}\right )\right \} \end {array} \]
Maple trace
` Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful `
Maple dsolve solution
Solving time : 0.006
(sec)
Leaf size : 41
dsolve ( sec ( x )^2* tan ( y ( x ))* diff ( y ( x ), x )+ sec ( y ( x ))^2* tan ( x ) = 0,
y(x),singsol=all)
\begin{align*}
y &= \operatorname {arcsec}\left (\frac {2}{\sqrt {-2 \cos \left (2 x \right )+8 c_1}}\right ) \\
y &= \frac {\pi }{2}+\operatorname {arccsc}\left (\frac {2}{\sqrt {-2 \cos \left (2 x \right )+8 c_1}}\right ) \\
\end{align*}
Mathematica DSolve solution
Solving time : 0.522
(sec)
Leaf size : 41
DSolve [{ Sec [ x ]^2* Tan [ y [ x ]]* D [ y [ x ], x ]+ Sec [ y [ x ]]^2* Tan [ x ]==0,{}},
y[x],x,IncludeSingularSolutions-> True ]
\begin{align*}
y(x)\to -\frac {1}{2} \arccos (-\cos (2 x)-2 c_1) \\
y(x)\to \frac {1}{2} \arccos (-\cos (2 x)-2 c_1) \\
\end{align*}