2.5.3 Problem 4
Internal
problem
ID
[19732]
Book
:
Elementary
Differential
Equations.
By
Thornton
C.
Fry.
D
Van
Nostrand.
NY.
First
Edition
(1929)
Section
:
Chapter
IV.
Methods
of
solution:
First
order
equations.
section
32.
Problems
at
page
89
Problem
number
:
4
Date
solved
:
Wednesday, January 28, 2026 at 11:00:55 AM
CAS
classification
:
[_quadrature]
2.5.3.1 Solved using first_order_ode_quadrature
0.196 (sec)
Entering first order ode quadrature solver
\begin{align*}
y^{\prime }&={\mathrm e}^{z -y^{\prime }} \\
\end{align*}
Since the ode has the form \(y^{\prime }=f(z)\), then we only need to
integrate \(f(z)\). \begin{align*} \int {dy} &= \int {\operatorname {LambertW}\left ({\mathrm e}^{z}\right )\, dz}\\ y &= \frac {\operatorname {LambertW}\left ({\mathrm e}^{z}\right )^{2}}{2}+\operatorname {LambertW}\left ({\mathrm e}^{z}\right ) + c_1 \end{align*}
\begin{align*} y&= \operatorname {LambertW}\left ({\mathrm e}^{z}\right )+\frac {\operatorname {LambertW}\left ({\mathrm e}^{z}\right )^{2}}{2}+c_1 \end{align*}
|
|
|
| Direction field \(y^{\prime } = {\mathrm e}^{z -y^{\prime }}\) | Isoclines for \(y^{\prime } = {\mathrm e}^{z -y^{\prime }}\) |
Summary of solutions found
\begin{align*}
y &= \operatorname {LambertW}\left ({\mathrm e}^{z}\right )+\frac {\operatorname {LambertW}\left ({\mathrm e}^{z}\right )^{2}}{2}+c_1 \\
\end{align*}
2.5.3.2 ✓ Maple. Time used: 0.003 (sec). Leaf size: 16
ode:=diff(y(z),z) = exp(z-diff(y(z),z));
dsolve(ode,y(z), singsol=all);
\[
y = \operatorname {LambertW}\left ({\mathrm e}^{z}\right )+\frac {\operatorname {LambertW}\left ({\mathrm e}^{z}\right )^{2}}{2}+c_1
\]
Maple trace
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \frac {d}{d z}y \left (z \right )={\mathrm e}^{z -\frac {d}{d z}y \left (z \right )} \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & \frac {d}{d z}y \left (z \right ) \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d z}y \left (z \right )=\mathit {LambertW}\left ({\mathrm e}^{z}\right ) \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} z \\ {} & {} & \int \left (\frac {d}{d z}y \left (z \right )\right )d z =\int \mathit {LambertW}\left ({\mathrm e}^{z}\right )d z +\mathit {C1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & y \left (z \right )=\mathit {LambertW}\left ({\mathrm e}^{z}\right )+\frac {\mathit {LambertW}\left ({\mathrm e}^{z}\right )^{2}}{2}+\mathit {C1} \end {array} \]
2.5.3.3 ✓ Mathematica. Time used: 0.012 (sec). Leaf size: 22
ode=D[y[z],z]==Exp[z-D[y[z],z]];
ic={};
DSolve[{ode,ic},y[z],z,IncludeSingularSolutions->True]
\begin{align*} y(z)&\to \frac {1}{2} W\left (e^z\right )^2+W\left (e^z\right )+c_1 \end{align*}
2.5.3.4 ✓ Sympy. Time used: 0.358 (sec). Leaf size: 17
from sympy import *
z = symbols("z")
y = Function("y")
ode = Eq(-exp(z - Derivative(y(z), z)) + Derivative(y(z), z),0)
ics = {}
dsolve(ode,func=y(z),ics=ics)
\[
y{\left (z \right )} = C_{1} + \frac {W^{2}\left (e^{z}\right )}{2} + W\left (e^{z}\right )
\]
Python version: 3.12.3 (main, Aug 14 2025, 17:47:21) [GCC 13.3.0]
Sympy version 1.14.0
classify_ode(ode,func=y(z))
('factorable', 'nth_algebraic', 'lie_group', 'nth_algebraic_Integral')