2.9.1 problem 1
Internal
problem
ID
[18268]
Book
:
Elementary
Differential
Equations.
By
Thornton
C.
Fry.
D
Van
Nostrand.
NY.
First
Edition
(1929)
Section
:
Chapter
VII.
Linear
equations
of
order
higher
than
the
first.
section
63.
Problems
at
page
196
Problem
number
:
1
Date
solved
:
Monday, December 23, 2024 at 09:47:17 PM
CAS
classification
:
[[_3rd_order, _missing_x]]
Solve
\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y&=0 \end{align*}
Solved as higher order constant coeff ode
Time used: 0.186 (sec)
The characteristic equation is
\[ \lambda ^{3}-\lambda ^{2}-\lambda +1 = 0 \]
The roots of the above equation are
\begin{align*} \lambda _1 &= -1\\ \lambda _2 &= 1\\ \lambda _3 &= 1 \end{align*}
Therefore the homogeneous solution is
\[ y_h(x)={\mathrm e}^{-x} c_1 +{\mathrm e}^{x} c_2 +x \,{\mathrm e}^{x} c_3 \]
The fundamental set of solutions for the
homogeneous solution are the following
\begin{align*} y_1 &= {\mathrm e}^{-x}\\ y_2 &= {\mathrm e}^{x}\\ y_3 &= x \,{\mathrm e}^{x} \end{align*}
Maple step by step solution
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 3 \\ {} & {} & y^{\prime \prime \prime } \\ \bullet & {} & \textrm {Characteristic polynomial of ODE}\hspace {3pt} \\ {} & {} & r^{3}-r^{2}-r +1=0 \\ \bullet & {} & \textrm {Roots of the characteristic polynomial and corresponding multiplicities}\hspace {3pt} \\ {} & {} & r =\left [\left [-1, 1\right ], \left [1, 2\right ]\right ] \\ \bullet & {} & \textrm {Solution from}\hspace {3pt} r =-1 \\ {} & {} & y_{1}\left (x \right )={\mathrm e}^{-x} \\ \bullet & {} & \textrm {1st solution from}\hspace {3pt} r =1 \\ {} & {} & y_{2}\left (x \right )={\mathrm e}^{x} \\ \bullet & {} & \textrm {2nd solution from}\hspace {3pt} r =1 \\ {} & {} & y_{3}\left (x \right )=x \,{\mathrm e}^{x} \\ \bullet & {} & \textrm {General solution of the ODE}\hspace {3pt} \\ {} & {} & y=\mathit {C1} y_{1}\left (x \right )+\mathit {C2} y_{2}\left (x \right )+\mathit {C3} y_{3}\left (x \right ) \\ \bullet & {} & \textrm {Substitute in solutions and simplify}\hspace {3pt} \\ {} & {} & y={\mathrm e}^{-x} \mathit {C1} +{\mathrm e}^{x} \left (\mathit {C3} x +\mathit {C2} \right ) \end {array} \]
Maple trace
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
Maple dsolve solution
Solving time : 0.003
(sec)
Leaf size : 19
dsolve(diff(diff(diff(y(x),x),x),x)-diff(diff(y(x),x),x)-diff(y(x),x)+y(x) = 0,
y(x),singsol=all)
\[
y = {\mathrm e}^{-x} c_1 +{\mathrm e}^{x} \left (c_3 x +c_2 \right )
\]
Mathematica DSolve solution
Solving time : 0.003
(sec)
Leaf size : 25
DSolve[{D[y[x],{x,3}]-D[y[x],{x,2}]-D[y[x],x]+y[x]==0,{}},
y[x],x,IncludeSingularSolutions->True]
\[
y(x)\to c_1 e^{-x}+e^x (c_3 x+c_2)
\]