2.1.11 Problem 2 (v)
Internal
problem
ID
[19669]
Book
:
Elementary
Differential
Equations.
By
R.L.E.
Schwarzenberger.
Chapman
and
Hall.
London.
First
Edition
(1969)
Section
:
Chapter
3.
Solutions
of
first-order
equations.
Exercises
at
page
47
Problem
number
:
2
(v)
Date
solved
:
Friday, January 30, 2026 at 12:06:22 AM
CAS
classification
:
[_quadrature]
2.1.11.1 Existence and uniqueness analysis
\begin{align*}
x^{\prime }&=2 \sqrt {x} \\
x \left (0\right ) &= 1 \\
\end{align*}
This is non linear first order ODE. In canonical form it is written as \begin{align*} x^{\prime } &= f(t,x)\\ &= 2 \sqrt {x} \end{align*}
The \(x\) domain of \(f(t,x)\) when \(t=0\) is
\[
\{0\le x\}
\]
And the point \(x_0 = 1\) is inside this domain. Now we will look at the continuity
of \begin{align*} \frac {\partial f}{\partial x} &= \frac {\partial }{\partial x}\left (2 \sqrt {x}\right ) \\ &= \frac {1}{\sqrt {x}} \end{align*}
The \(x\) domain of \(\frac {\partial f}{\partial x}\) when \(t=0\) is
\[
\{0<x\}
\]
And the point \(x_0 = 1\) is inside this domain. Therefore solution exists and is
unique.
2.1.11.2 Solved using first_order_ode_autonomous
0.315 (sec)
Entering first order ode autonomous solver
\begin{align*}
x^{\prime }&=2 \sqrt {x} \\
x \left (0\right ) &= 1 \\
\end{align*}
Integrating gives \begin{align*} \int \frac {1}{2 \sqrt {x}}d x &= dt\\ \sqrt {x}&= t +c_1 \end{align*}
The following diagram is the phase line diagram. It classifies each of the above equilibrium
points as stable or not stable or semi-stable.
Solving for initial conditions the solution becomes
\begin{align*}
\sqrt {x} &= t +1 \\
\end{align*}
Solving for \(x\) gives \begin{align*}
x &= t^{2}+2 t +1 \\
\end{align*}
Solution plot for \(x^{\prime } = 2 \sqrt {x}\) Direction fields for \(x^{\prime } = 2 \sqrt {x}\)
Isoclines for \(x^{\prime } = 2 \sqrt {x}\)
Summary of solutions found
\begin{align*}
x &= t^{2}+2 t +1 \\
\end{align*}
2.1.11.3 Solved using first_order_ode_bernoulli
0.188 (sec)
Entering first order ode bernoulli solver
\begin{align*}
x^{\prime }&=2 \sqrt {x} \\
x \left (0\right ) &= 1 \\
\end{align*}
In canonical form, the ODE is
\begin{align*} x' &= F(t,x)\\ &= 2 \sqrt {x} \end{align*}
This is a Bernoulli ODE.
\[ x' = \left (2\right ) \sqrt {x} \tag {1} \]
The standard Bernoulli ODE has the form \[ x' = f_0(t)x+f_1(t)x^n \tag {2} \]
Comparing this to (1)
shows that \begin{align*} f_0 &=0\\ f_1 &=2 \end{align*}
The first step is to divide the above equation by \(x^n \) which gives
\[ \frac {x'}{x^n} = f_1(t) \tag {3} \]
The next step is use the
substitution \(v = x^{1-n}\) in equation (3) which generates a new ODE in \(v \left (t \right )\) which will be linear and can be
easily solved using an integrating factor. Backsubstitution then gives the solution \(x(t)\) which is what
we want.
This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that
\begin{align*} f_0(t)&=0\\ f_1(t)&=2\\ n &={\frac {1}{2}} \end{align*}
Dividing both sides of ODE (1) by \(x^n=\sqrt {x}\) gives
\begin{align*} x'\frac {1}{\sqrt {x}} &= 0 +2 \tag {4} \end{align*}
Let
\begin{align*} v &= x^{1-n} \\ &= \sqrt {x} \tag {5} \end{align*}
Taking derivative of equation (5) w.r.t \(t\) gives
\begin{align*} v' &= \frac {1}{2 \sqrt {x}}x' \tag {6} \end{align*}
Substituting equations (5) and (6) into equation (4) gives
\begin{align*} 2 v^{\prime }\left (t \right )&= 2\\ v' &= 1 \tag {7} \end{align*}
The above now is a linear ODE in \(v \left (t \right )\) which is now solved.
Since the ode has the form \(v^{\prime }\left (t \right )=f(t)\) , then we only need to integrate \(f(t)\) .
\begin{align*} \int {dv} &= \int {1\, dt}\\ v \left (t \right ) &= t + c_1 \end{align*}
\begin{align*} v \left (t \right )&= t +c_1 \end{align*}
The substitution \(v = x^{1-n}\) is now used to convert the above solution back to \(x\) which results in
\[
\sqrt {x} = t +c_1
\]
Solving for
initial conditions the solution becomes \begin{align*}
\sqrt {x} &= t +1 \\
\end{align*}
Solving for \(x\) gives \begin{align*}
x &= t^{2}+2 t +1 \\
\end{align*}
Solution plot for \(x^{\prime } = 2 \sqrt {x}\) Direction fields for \(x^{\prime } = 2 \sqrt {x}\)
Isoclines for \(x^{\prime } = 2 \sqrt {x}\)
Summary of solutions found
\begin{align*}
x &= t^{2}+2 t +1 \\
\end{align*}
2.1.11.4 Solved using first_order_ode_exact
0.236 (sec)
Entering first order ode exact solver
\begin{align*}
x^{\prime }&=2 \sqrt {x} \\
x \left (0\right ) &= 1 \\
\end{align*}
To solve an ode of the form
\begin{equation} M\left ( x,y\right ) +N\left ( x,y\right ) \frac {dy}{dx}=0\tag {A}\end{equation}
We assume there exists a function \(\phi \left ( x,y\right ) =c\) where \(c\) is constant, that
satisfies the ode. Taking derivative of \(\phi \) w.r.t. \(x\) gives \[ \frac {d}{dx}\phi \left ( x,y\right ) =0 \]
Hence \begin{equation} \frac {\partial \phi }{\partial x}+\frac {\partial \phi }{\partial y}\frac {dy}{dx}=0\tag {B}\end{equation}
Comparing (A,B) shows
that \begin{align*} \frac {\partial \phi }{\partial x} & =M\\ \frac {\partial \phi }{\partial y} & =N \end{align*}
But since \(\frac {\partial ^{2}\phi }{\partial x\partial y}=\frac {\partial ^{2}\phi }{\partial y\partial x}\) then for the above to be valid, we require that
\[ \frac {\partial M}{\partial y}=\frac {\partial N}{\partial x}\]
If the above condition is satisfied, then
the original ode is called exact. We still need to determine \(\phi \left ( x,y\right ) \) but at least we know now that we can
do that since the condition \(\frac {\partial ^{2}\phi }{\partial x\partial y}=\frac {\partial ^{2}\phi }{\partial y\partial x}\) is satisfied. If this condition is not satisfied then this method will not
work and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness, which
is \[ M(t,x) \mathop {\mathrm {d}t}+ N(t,x) \mathop {\mathrm {d}x}=0 \tag {1A} \]
Therefore \begin{align*} \mathop {\mathrm {d}x} &= \left (2 \sqrt {x}\right )\mathop {\mathrm {d}t}\\ \left (-2 \sqrt {x}\right ) \mathop {\mathrm {d}t} + \mathop {\mathrm {d}x} &= 0 \tag {2A} \end{align*}
Comparing (1A) and (2A) shows that
\begin{align*} M(t,x) &= -2 \sqrt {x}\\ N(t,x) &= 1 \end{align*}
The next step is to determine if the ODE is is exact or not. The ODE is exact when the following
condition is satisfied
\[ \frac {\partial M}{\partial x} = \frac {\partial N}{\partial t} \]
Using result found above gives \begin{align*} \frac {\partial M}{\partial x} &= \frac {\partial }{\partial x} \left (-2 \sqrt {x}\right )\\ &= -\frac {1}{\sqrt {x}} \end{align*}
And
\begin{align*} \frac {\partial N}{\partial t} &= \frac {\partial }{\partial t} \left (1\right )\\ &= 0 \end{align*}
Since \(\frac {\partial M}{\partial x} \neq \frac {\partial N}{\partial t}\) , then the ODE is not exact . Since the ODE is not exact, we will try to find an integrating
factor to make it exact. Let
\begin{align*} A &= \frac {1}{N} \left (\frac {\partial M}{\partial x} - \frac {\partial N}{\partial t} \right ) \\ &=1\left ( \left ( -\frac {1}{\sqrt {x}}\right ) - \left (0 \right ) \right ) \\ &=-\frac {1}{\sqrt {x}} \end{align*}
Since \(A\) depends on \(x\) , it can not be used to obtain an integrating factor. We will now try a second
method to find an integrating factor. Let
\begin{align*} B &= \frac {1}{M} \left ( \frac {\partial N}{\partial t} - \frac {\partial M}{\partial x} \right ) \\ &=-\frac {1}{2 \sqrt {x}}\left ( \left ( 0\right ) - \left (-\frac {1}{\sqrt {x}} \right ) \right ) \\ &=-\frac {1}{2 x} \end{align*}
Since \(B\) does not depend on \(t\) , it can be used to obtain an integrating factor. Let the integrating
factor be \(\mu \) . Then
\begin{align*} \mu &= e^{\int B \mathop {\mathrm {d}x}} \\ &= e^{\int -\frac {1}{2 x}\mathop {\mathrm {d}x} } \end{align*}
The result of integrating gives
\begin{align*} \mu &= e^{-\frac {\ln \left (x \right )}{2} } \\ &= \frac {1}{\sqrt {x}} \end{align*}
\(M\) and \(N\) are now multiplied by this integrating factor, giving new \(M\) and new \(N\) which are called \(\overline {M}\) and \(\overline {N}\) so
not to confuse them with the original \(M\) and \(N\) .
\begin{align*} \overline {M} &=\mu M \\ &= \frac {1}{\sqrt {x}}\left (-2 \sqrt {x}\right ) \\ &= -2 \end{align*}
And
\begin{align*} \overline {N} &=\mu N \\ &= \frac {1}{\sqrt {x}}\left (1\right ) \\ &= \frac {1}{\sqrt {x}} \end{align*}
So now a modified ODE is obtained from the original ODE which will be exact and can be solved
using the standard method. The modified ODE is
\begin{align*} \overline {M} + \overline {N} \frac { \mathop {\mathrm {d}x}}{\mathop {\mathrm {d}t}} &= 0 \\ \left (-2\right ) + \left (\frac {1}{\sqrt {x}}\right ) \frac { \mathop {\mathrm {d}x}}{\mathop {\mathrm {d}t}} &= 0 \end{align*}
The following equations are now set up to solve for the function \(\phi \left (t,x\right )\)
\begin{align*} \frac {\partial \phi }{\partial t } &= \overline {M}\tag {1} \\ \frac {\partial \phi }{\partial x } &= \overline {N}\tag {2} \end{align*}
Integrating (1) w.r.t. \(t\) gives
\begin{align*}
\int \frac {\partial \phi }{\partial t} \mathop {\mathrm {d}t} &= \int \overline {M}\mathop {\mathrm {d}t} \\
\int \frac {\partial \phi }{\partial t} \mathop {\mathrm {d}t} &= \int -2\mathop {\mathrm {d}t} \\
\tag{3} \phi &= -2 t+ f(x) \\
\end{align*}
Where \(f(x)\) is used for the constant of integration since \(\phi \) is a function of
both \(t\) and \(x\) . Taking derivative of equation (3) w.r.t \(x\) gives \begin{equation}
\tag{4} \frac {\partial \phi }{\partial x} = 0+f'(x)
\end{equation}
But equation (2) says that \(\frac {\partial \phi }{\partial x} = \frac {1}{\sqrt {x}}\) . Therefore
equation (4) becomes \begin{equation}
\tag{5} \frac {1}{\sqrt {x}} = 0+f'(x)
\end{equation}
Solving equation (5) for \( f'(x)\) gives \[
f'(x) = \frac {1}{\sqrt {x}}
\]
Integrating the above w.r.t \(x\) gives \begin{align*}
\int f'(x) \mathop {\mathrm {d}x} &= \int \left ( \frac {1}{\sqrt {x}}\right ) \mathop {\mathrm {d}x} \\
f(x) &= 2 \sqrt {x}+ c_1 \\
\end{align*}
\[
\phi = -2 t +2 \sqrt {x}+ c_1
\]
But
since \(\phi \) itself is a constant function, then let \(\phi =c_2\) where \(c_2\) is new constant and combining \(c_1\) and \(c_2\) constants
into the constant \(c_1\) gives the solution as \[
c_1 = -2 t +2 \sqrt {x}
\]
Solving for initial conditions the solution becomes \begin{align*}
-2 t +2 \sqrt {x} &= 2 \\
\end{align*}
Solving for \(x\) gives \begin{align*}
x &= t^{2}+2 t +1 \\
\end{align*}
Solution plot for \(x^{\prime } = 2 \sqrt {x}\) Direction fields for \(x^{\prime } = 2 \sqrt {x}\)
Isoclines for \(x^{\prime } = 2 \sqrt {x}\)
Summary of solutions found
\begin{align*}
x &= t^{2}+2 t +1 \\
\end{align*}
2.1.11.5 Solved using first_order_ode_dAlembert
0.328 (sec)
Entering first order ode dAlembert solver
\begin{align*}
x^{\prime }&=2 \sqrt {x} \\
x \left (0\right ) &= 1 \\
\end{align*}
Let \(p=x^{\prime }\) the ode becomes \begin{align*} p = 2 \sqrt {x} \end{align*}
Solving for \(x\) from the above results in
\begin{align*}
\tag{1} x &= \frac {p^{2}}{4} \\
\end{align*}
This has the form \begin{align*} x=t f(p)+g(p)\tag {*} \end{align*}
Where \(f,g\) are functions of \(p=x'(t)\) . The above ode is dAlembert ode which is now solved.
Taking derivative of (*) w.r.t. \(t\) gives
\begin{align*} p &= f+(t f'+g') \frac {dp}{dt}\\ p-f &= (t f'+g') \frac {dp}{dt}\tag {2} \end{align*}
Comparing the form \(x=t f + g\) to (1A) shows that
\begin{align*} f &= 0\\ g &= \frac {p^{2}}{4} \end{align*}
Hence (2) becomes
\begin{equation}
\tag{2A} p = \frac {p p^{\prime }\left (t \right )}{2}
\end{equation}
The singular solution is found by setting \(\frac {dp}{dt}=0\) in the above which gives
\begin{align*} p = 0 \end{align*}
No valid singular solutions found.
The general solution is found when \( \frac { \mathop {\mathrm {d}p}}{\mathop {\mathrm {d}t}}\neq 0\) . From eq. (2A). This results in
\begin{equation}
\tag{3} p^{\prime }\left (t \right ) = 2
\end{equation}
This ODE is now solved for \(p \left (t \right )\) .
No inversion is needed.
Since the ode has the form \(p^{\prime }\left (t \right )=f(t)\) , then we only need to integrate \(f(t)\) .
\begin{align*} \int {dp} &= \int {2\, dt}\\ p \left (t \right ) &= 2 t + c_1 \end{align*}
\begin{align*} p \left (t \right )&= 2 t +c_1 \end{align*}
Substituing the above solution for \(p\) in (2A) gives
\begin{align*}
x &= \frac {\left (2 t +c_1 \right )^{2}}{4} \\
\end{align*}
Solving for initial conditions the solution
becomes \begin{align*}
x &= \left (t +1\right )^{2} \\
\end{align*}
Solution plot for \(x^{\prime } = 2 \sqrt {x}\) Direction fields for \(x^{\prime } = 2 \sqrt {x}\)
Isoclines for \(x^{\prime } = 2 \sqrt {x}\)
Summary of solutions found
\begin{align*}
x &= \left (t +1\right )^{2} \\
\end{align*}
2.1.11.6 Solved using first_order_ode_homog_type_G
0.658 (sec)
Entering first order ode homog type G solver
\begin{align*}
x^{\prime }&=2 \sqrt {x} \\
x \left (0\right ) &= 1 \\
\end{align*}
Multiplying the right side of the ode, which is \(2 \sqrt {x}\) by \(\frac {t}{x}\)
gives \begin{align*} x^{\prime } &= \left (\frac {t}{x}\right ) 2 \sqrt {x}\\ &= \frac {2 t}{\sqrt {x}}\\ &= F(t,x) \end{align*}
Since \(F \left (t , x\right )\) has \(x\) , then let
\begin{align*} f_t&= t \left (\frac {\partial }{\partial t}F \left (t , x\right )\right )\\ &= \frac {2 t}{\sqrt {x}}\\ f_x&= x \left (\frac {\partial }{\partial x}F \left (t , x\right )\right )\\ &= -\frac {t}{\sqrt {x}}\\ \alpha &= \frac {f_t}{f_x} \\ &=-2 \end{align*}
Since \(\alpha \) is independent of \(t,x\) then this is Homogeneous type G.
Let
\begin{align*} x&=\frac {z}{t^ \alpha }\\ &=\frac {z}{\frac {1}{t^{2}}} \end{align*}
Substituting the above back into \(F(t,x)\) gives
\begin{align*} F \left (z \right ) &=\frac {2}{\sqrt {z}} \end{align*}
We see that \(F \left (z \right )\) does not depend on \(t\) nor on \(x\) . If this was not the case, then this method will not
work.
Therefore, the implicit solution is given by
\begin{align*} \ln \left (t \right )- c_1 - \int ^{x t^\alpha } \frac {1}{z \left (\alpha + F(z)\right ) } \,dz & = 0 \end{align*}
Which gives
\[
\ln \left (t \right )-c_1 +\int _{}^{\frac {x}{t^{2}}}\frac {1}{z \left (2-\frac {2}{\sqrt {z}}\right )}d z = 0
\]
The value of the above is \[
\ln \left (t \right )-c_1 +\ln \left (\sqrt {\frac {x}{t^{2}}}-1\right ) = 0
\]
Solving for \(x\) gives \begin{align*}
x &= \left ({\mathrm e}^{c_1}+t \right )^{2} \\
\end{align*}
Solving for initial conditions the
solution becomes \begin{align*}
x &= \left (t +1\right )^{2} \\
\end{align*}
Solution plot for \(x^{\prime } = 2 \sqrt {x}\) Direction fields for \(x^{\prime } = 2 \sqrt {x}\)
Isoclines for \(x^{\prime } = 2 \sqrt {x}\)
Summary of solutions found
\begin{align*}
x &= \left (t +1\right )^{2} \\
\end{align*}
2.1.11.7 ✓ Maple. Time used: 0.029 (sec). Leaf size: 9
ode := diff ( x ( t ), t ) = 2*x(t)^(1/2);
ic :=[ x (0) = 1];
dsolve ([ ode , op ( ic )], x ( t ), singsol=all);
\[
x = \left (t +1\right )^{2}
\]
Maple trace
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left [\frac {d}{d t}x \left (t \right )=2 \sqrt {x \left (t \right )}, x \left (0\right )=1\right ] \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & \frac {d}{d t}x \left (t \right ) \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d t}x \left (t \right )=2 \sqrt {x \left (t \right )} \\ \bullet & {} & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {\frac {d}{d t}x \left (t \right )}{\sqrt {x \left (t \right )}}=2 \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} t \\ {} & {} & \int \frac {\frac {d}{d t}x \left (t \right )}{\sqrt {x \left (t \right )}}d t =\int 2d t +\mathit {C1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & 2 \sqrt {x \left (t \right )}=2 t +\mathit {C1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} x \left (t \right ) \\ {} & {} & x \left (t \right )=t^{2}+t \mathit {C1} +\frac {1}{4} \mathit {C1}^{2} \\ \bullet & {} & \textrm {Simplify}\hspace {3pt} \\ {} & {} & x \left (t \right )=\left (t +\frac {\mathit {C1}}{2}\right )^{2} \\ \bullet & {} & \textrm {Redefine the integration constant(s)}\hspace {3pt} \\ {} & {} & x \left (t \right )=\left (t +\mathit {C1} \right )^{2} \\ \bullet & {} & \textrm {Use initial condition}\hspace {3pt} x \left (0\right )=1 \\ {} & {} & 1=\mathit {C1}^{2} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} \textit {\_C1} \\ {} & {} & \left \{\mathit {C1} =-1, \mathit {C1} =1\right \} \\ \bullet & {} & \mathrm {Remove solutions that don\esapos t satisfy the ODE} \\ {} & {} & \varnothing \\ \bullet & {} & \textrm {Solution does not satisfy initial condition}\hspace {3pt} \end {array} \]
2.1.11.8 ✓ Mathematica. Time used: 0.003 (sec). Leaf size: 10
ode = D [ x [ t ], t ]==2* Sqrt [ x [ t ]];
ic ={ x [0]==1};
DSolve [{ ode , ic }, x [ t ], t , IncludeSingularSolutions -> True ]
\begin{align*} x(t)&\to (t+1)^2 \end{align*}
2.1.11.9 ✗ Sympy
from sympy import *
t = symbols( " t " )
x = Function( " x " )
ode = Eq(-2*sqrt(x(t)) + Derivative(x(t), t),0)
ics = {x(0): 1}
dsolve ( ode , func = x ( t ), ics = ics )
NotImplementedError : Initial conditions produced too many solutions for constants
Python version: 3.12.3 (main, Aug 14 2025, 17:47:21) [GCC 13.3.0]
Sympy version 1.14.0
classify_ode ( ode , func = x ( t ))
( ' separable ' , ' 1st_exact ' , ' Bernoulli ' , ' 1st_power_series ' , ' lie_group ' , ' separable_Integral ' , ' 1st_exact_Integral ' , ' Bernoulli_Integral ' )