2.1.15 Problem 3 (iii)
Internal
problem
ID
[19673]
Book
:
Elementary
Differential
Equations.
By
R.L.E.
Schwarzenberger.
Chapman
and
Hall.
London.
First
Edition
(1969)
Section
:
Chapter
3.
Solutions
of
first-order
equations.
Exercises
at
page
47
Problem
number
:
3
(iii)
Date
solved
:
Thursday, December 11, 2025 at 01:41:21 PM
CAS
classification
:
[[_homogeneous, `class A`], _dAlembert]
2.1.15.1 Solved using first_order_ode_homog_A
0.189 (sec)
Entering first order ode homog A solver
\begin{align*}
x^{\prime }&=\cos \left (\frac {x}{t}\right ) \\
\end{align*}
In canonical form, the ODE is \begin{align*} x' &= F(t,x)\\ &= \cos \left (\frac {x}{t}\right )\tag {1} \end{align*}
An ode of the form \(x' = \frac {M(t,x)}{N(t,x)}\) is called homogeneous if the functions \(M(t,x)\) and \(N(t,x)\) are both homogeneous functions
and of the same order. Recall that a function \(f(t,x)\) is homogeneous of order \(n\) if
\[ f(t^n t, t^n x)= t^n f(t,x) \]
In this case, it can be
seen that both \(M=\cos \left (\frac {x}{t}\right )\) and \(N=1\) are both homogeneous and of the same order \(n=0\) . Therefore this is a
homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the
substitution \(u=\frac {x}{t}\) , or \(x=ut\) . Hence \[ \frac { \mathop {\mathrm {d}x}}{\mathop {\mathrm {d}t}}= \frac { \mathop {\mathrm {d}u}}{\mathop {\mathrm {d}t}}t + u \]
Applying the transformation \(x=ut\) to the above ODE in (1) gives
\begin{align*} \frac { \mathop {\mathrm {d}u}}{\mathop {\mathrm {d}t}}t + u &= \cos \left (u \right )\\ \frac { \mathop {\mathrm {d}u}}{\mathop {\mathrm {d}t}} &= \frac {\cos \left (u \left (t \right )\right )-u \left (t \right )}{t} \end{align*}
Or
\[ u^{\prime }\left (t \right )-\frac {\cos \left (u \left (t \right )\right )-u \left (t \right )}{t} = 0 \]
Or \[ u^{\prime }\left (t \right ) t -\cos \left (u \left (t \right )\right )+u \left (t \right ) = 0 \]
Which is now solved as separable in \(u \left (t \right )\) .
The ode
\begin{equation}
u^{\prime }\left (t \right ) = \frac {\cos \left (u \left (t \right )\right )-u \left (t \right )}{t}
\end{equation}
is separable as it can be written as \begin{align*} u^{\prime }\left (t \right )&= \frac {\cos \left (u \left (t \right )\right )-u \left (t \right )}{t}\\ &= f(t) g(u) \end{align*}
Where
\begin{align*} f(t) &= \frac {1}{t}\\ g(u) &= \cos \left (u \right )-u \end{align*}
Integrating gives
\begin{align*}
\int { \frac {1}{g(u)} \,du} &= \int { f(t) \,dt} \\
\int { \frac {1}{\cos \left (u \right )-u}\,du} &= \int { \frac {1}{t} \,dt} \\
\end{align*}
\[
\int _{}^{u \left (t \right )}\frac {1}{\cos \left (\tau \right )-\tau }d \tau = \ln \left (t \right )+c_1
\]
We now need to find the singular solutions, these are found by finding
for what values \(g(u)\) is zero, since we had to divide by this above. Solving \(g(u)=0\) or \[
\cos \left (u \right )-u=0
\]
for \(u \left (t \right )\) gives
\begin{align*} u \left (t \right )&=\operatorname {RootOf}\left (-\cos \left (\textit {\_Z} \right )+\textit {\_Z} \right ) \end{align*}
Now we go over each such singular solution and check if it verifies the ode itself and any initial
conditions given. If it does not then the singular solution will not be used.
The solution \(\operatorname {RootOf}\left (-\cos \left (\textit {\_Z} \right )+\textit {\_Z} \right )\) will not be used
Converting \(\int _{}^{u \left (t \right )}\frac {1}{\cos \left (\tau \right )-\tau }d \tau = \ln \left (t \right )+c_1\) back to \(x\) gives
\begin{align*} \int _{}^{\frac {x}{t}}\frac {1}{\cos \left (\tau \right )-\tau }d \tau = \ln \left (t \right )+c_1 \end{align*}
Figure 2.11: Slope field \(x^{\prime } = \cos \left (\frac {x}{t}\right )\)
Summary of solutions found
\begin{align*}
\int _{}^{\frac {x}{t}}\frac {1}{\cos \left (\tau \right )-\tau }d \tau &= \ln \left (t \right )+c_1 \\
\end{align*}
2.1.15.2 Solved using first_order_ode_dAlembert
0.366 (sec)
Entering first order ode dAlembert solver
\begin{align*}
x^{\prime }&=\cos \left (\frac {x}{t}\right ) \\
\end{align*}
Let \(p=x^{\prime }\) the ode becomes \begin{align*} p = \cos \left (\frac {x}{t}\right ) \end{align*}
Solving for \(x\) from the above results in
\begin{align*}
\tag{1} x &= \arccos \left (p \right ) t \\
\end{align*}
This has the form \begin{align*} x=t f(p)+g(p)\tag {*} \end{align*}
Where \(f,g\) are functions of \(p=x'(t)\) . The above ode is dAlembert ode which is now solved.
Taking derivative of (*) w.r.t. \(t\) gives
\begin{align*} p &= f+(t f'+g') \frac {dp}{dt}\\ p-f &= (t f'+g') \frac {dp}{dt}\tag {2} \end{align*}
Comparing the form \(x=t f + g\) to (1A) shows that
\begin{align*} f &= \arccos \left (p \right )\\ g &= 0 \end{align*}
Hence (2) becomes
\begin{equation}
\tag{2A} p -\arccos \left (p \right ) = -\frac {t p^{\prime }\left (t \right )}{\sqrt {-p^{2}+1}}
\end{equation}
The singular solution is found by setting \(\frac {dp}{dt}=0\) in the above which gives
\begin{align*} p -\arccos \left (p \right ) = 0 \end{align*}
No valid singular solutions found.
The general solution is found when \( \frac { \mathop {\mathrm {d}p}}{\mathop {\mathrm {d}t}}\neq 0\) . From eq. (2A). This results in
\begin{equation}
\tag{3} p^{\prime }\left (t \right ) = -\frac {\left (p \left (t \right )-\arccos \left (p \left (t \right )\right )\right ) \sqrt {-p \left (t \right )^{2}+1}}{t}
\end{equation}
This ODE is now solved for \(p \left (t \right )\) .
No inversion is needed.
The ode
\begin{equation}
p^{\prime }\left (t \right ) = -\frac {\left (p \left (t \right )-\arccos \left (p \left (t \right )\right )\right ) \sqrt {-\left (p \left (t \right )-1\right ) \left (p \left (t \right )+1\right )}}{t}
\end{equation}
is separable as it can be written as \begin{align*} p^{\prime }\left (t \right )&= -\frac {\left (p \left (t \right )-\arccos \left (p \left (t \right )\right )\right ) \sqrt {-\left (p \left (t \right )-1\right ) \left (p \left (t \right )+1\right )}}{t}\\ &= f(t) g(p) \end{align*}
Where
\begin{align*} f(t) &= -\frac {1}{t}\\ g(p) &= \left (p -\arccos \left (p \right )\right ) \sqrt {-\left (p -1\right ) \left (p +1\right )} \end{align*}
Integrating gives
\begin{align*}
\int { \frac {1}{g(p)} \,dp} &= \int { f(t) \,dt} \\
\int { \frac {1}{\left (p -\arccos \left (p \right )\right ) \sqrt {-\left (p -1\right ) \left (p +1\right )}}\,dp} &= \int { -\frac {1}{t} \,dt} \\
\end{align*}
\[
\int _{}^{p \left (t \right )}\frac {1}{\left (\tau -\arccos \left (\tau \right )\right ) \sqrt {-\left (\tau -1\right ) \left (\tau +1\right )}}d \tau = \ln \left (\frac {1}{t}\right )+c_1
\]
We now need to find the singular solutions, these are found by finding
for what values \(g(p)\) is zero, since we had to divide by this above. Solving \(g(p)=0\) or \[
\left (p -\arccos \left (p \right )\right ) \sqrt {-\left (p -1\right ) \left (p +1\right )}=0
\]
for \(p \left (t \right )\) gives
\begin{align*} p \left (t \right )&=-1\\ p \left (t \right )&=1 \end{align*}
Now we go over each such singular solution and check if it verifies the ode itself and any initial
conditions given. If it does not then the singular solution will not be used.
Therefore the solutions found are
\begin{align*}
\int _{}^{p \left (t \right )}\frac {1}{\left (\tau -\arccos \left (\tau \right )\right ) \sqrt {-\left (\tau -1\right ) \left (\tau +1\right )}}d \tau &= \ln \left (\frac {1}{t}\right )+c_1 \\
p \left (t \right ) &= -1 \\
p \left (t \right ) &= 1 \\
\end{align*}
Substituing the above solution for \(p\) in (2A) gives \begin{align*}
x &= \arccos \left (\operatorname {RootOf}\left (-\int _{}^{\textit {\_Z}}\frac {1}{\left (\tau -\arccos \left (\tau \right )\right ) \sqrt {-\left (\tau -1\right ) \left (\tau +1\right )}}d \tau +\ln \left (\frac {1}{t}\right )+c_1 \right )\right ) t \\
x &= \pi t \\
x &= 0 \\
\end{align*}
The solution \[
x = 0
\]
was found not to satisfy the ode or the IC. Hence it is removed. The solution \[
x = \pi t
\]
was found not to
satisfy the ode or the IC. Hence it is removed.
Figure 2.12: Slope field \(x^{\prime } = \cos \left (\frac {x}{t}\right )\)
Summary of solutions found
\begin{align*}
x &= \arccos \left (\operatorname {RootOf}\left (-\int _{}^{\textit {\_Z}}\frac {1}{\left (\tau -\arccos \left (\tau \right )\right ) \sqrt {-\left (\tau -1\right ) \left (\tau +1\right )}}d \tau +\ln \left (\frac {1}{t}\right )+c_1 \right )\right ) t \\
\end{align*}
2.1.15.3 Solved using first_order_ode_homog_type_D2
0.124 (sec)
Entering first order ode homog type D2 solver
\begin{align*}
x^{\prime }&=\cos \left (\frac {x}{t}\right ) \\
\end{align*}
Applying change of variables \(x = u \left (t \right ) t\) , then the ode
becomes \begin{align*} u^{\prime }\left (t \right ) t +u \left (t \right ) = \cos \left (u \left (t \right )\right ) \end{align*}
Which is now solved The ode
\begin{equation}
u^{\prime }\left (t \right ) = -\frac {u \left (t \right )-\cos \left (u \left (t \right )\right )}{t}
\end{equation}
is separable as it can be written as \begin{align*} u^{\prime }\left (t \right )&= -\frac {u \left (t \right )-\cos \left (u \left (t \right )\right )}{t}\\ &= f(t) g(u) \end{align*}
Where
\begin{align*} f(t) &= \frac {1}{t}\\ g(u) &= -u +\cos \left (u \right ) \end{align*}
Integrating gives
\begin{align*}
\int { \frac {1}{g(u)} \,du} &= \int { f(t) \,dt} \\
\int { \frac {1}{-u +\cos \left (u \right )}\,du} &= \int { \frac {1}{t} \,dt} \\
\end{align*}
\[
\int _{}^{u \left (t \right )}\frac {1}{-\tau +\cos \left (\tau \right )}d \tau = \ln \left (t \right )+c_1
\]
We now need to find the singular solutions, these are found by finding
for what values \(g(u)\) is zero, since we had to divide by this above. Solving \(g(u)=0\) or \[
-u +\cos \left (u \right )=0
\]
for \(u \left (t \right )\) gives
\begin{align*} u \left (t \right )&=\operatorname {RootOf}\left (-\cos \left (\textit {\_Z} \right )+\textit {\_Z} \right ) \end{align*}
Now we go over each such singular solution and check if it verifies the ode itself and any initial
conditions given. If it does not then the singular solution will not be used.
The solution \(\operatorname {RootOf}\left (-\cos \left (\textit {\_Z} \right )+\textit {\_Z} \right )\) will not be used
Converting \(\int _{}^{u \left (t \right )}\frac {1}{-\tau +\cos \left (\tau \right )}d \tau = \ln \left (t \right )+c_1\) back to \(x\) gives
\begin{align*} \int _{}^{\frac {x}{t}}\frac {1}{-\tau +\cos \left (\tau \right )}d \tau = \ln \left (t \right )+c_1 \end{align*}
Figure 2.13: Slope field \(x^{\prime } = \cos \left (\frac {x}{t}\right )\)
Summary of solutions found
\begin{align*}
\int _{}^{\frac {x}{t}}\frac {1}{-\tau +\cos \left (\tau \right )}d \tau &= \ln \left (t \right )+c_1 \\
\end{align*}
2.1.15.4 Solved using first_order_ode_homog_type_G
0.073 (sec)
Entering first order ode homog type G solver
\begin{align*}
x^{\prime }&=\cos \left (\frac {x}{t}\right ) \\
\end{align*}
Multiplying the right side of the ode, which is \(\cos \left (\frac {x}{t}\right )\) by \(\frac {t}{x}\)
gives \begin{align*} x^{\prime } &= \left (\frac {t}{x}\right ) \cos \left (\frac {x}{t}\right )\\ &= \frac {t \cos \left (\frac {x}{t}\right )}{x}\\ &= F(t,x) \end{align*}
Since \(F \left (t , x\right )\) has \(x\) , then let
\begin{align*} f_t&= t \left (\frac {\partial }{\partial t}F \left (t , x\right )\right )\\ &= \frac {x \sin \left (\frac {x}{t}\right )+t \cos \left (\frac {x}{t}\right )}{x}\\ f_x&= x \left (\frac {\partial }{\partial x}F \left (t , x\right )\right )\\ &= -\frac {x \sin \left (\frac {x}{t}\right )+t \cos \left (\frac {x}{t}\right )}{x}\\ \alpha &= \frac {f_t}{f_x} \\ &=-1 \end{align*}
Since \(\alpha \) is independent of \(t,x\) then this is Homogeneous type G.
Let
\begin{align*} x&=\frac {z}{t^ \alpha }\\ &=\frac {z}{\frac {1}{t}} \end{align*}
Substituting the above back into \(F(t,x)\) gives
\begin{align*} F \left (z \right ) &=\frac {\cos \left (z \right )}{z} \end{align*}
We see that \(F \left (z \right )\) does not depend on \(t\) nor on \(x\) . If this was not the case, then this method will not
work.
Therefore, the implicit solution is given by
\begin{align*} \ln \left (t \right )- c_1 - \int ^{x t^\alpha } \frac {1}{z \left (\alpha + F(z)\right ) } \,dz & = 0 \end{align*}
Which gives
\[
\ln \left (t \right )-c_1 +\int _{}^{\frac {x}{t}}\frac {1}{z \left (1-\frac {\cos \left (z \right )}{z}\right )}d z = 0
\]
Figure 2.14: Slope field \(x^{\prime } = \cos \left (\frac {x}{t}\right )\)
Summary of solutions found
\begin{align*}
\ln \left (t \right )-c_1 +\int _{}^{\frac {x}{t}}\frac {1}{z \left (1-\frac {\cos \left (z \right )}{z}\right )}d z &= 0 \\
\end{align*}
2.1.15.5 Solved using first_order_ode_LIE
0.902 (sec)
Entering first order ode LIE solver
\begin{align*}
x^{\prime }&=\cos \left (\frac {x}{t}\right ) \\
\end{align*}
Writing the ode as \begin{align*} x^{\prime }&=\cos \left (\frac {x}{t}\right )\\ x^{\prime }&= \omega \left ( t,x\right ) \end{align*}
The condition of Lie symmetry is the linearized PDE given by
\begin{align*} \eta _{t}+\omega \left ( \eta _{x}-\xi _{t}\right ) -\omega ^{2}\xi _{x}-\omega _{t}\xi -\omega _{x}\eta =0\tag {A} \end{align*}
To determine \(\xi ,\eta \) then (A) is solved using ansatz. Making bivariate polynomials of degree 1
to use as anstaz gives
\begin{align*}
\tag{1E} \xi &= t a_{2}+x a_{3}+a_{1} \\
\tag{2E} \eta &= t b_{2}+x b_{3}+b_{1} \\
\end{align*}
Where the unknown coefficients are \[
\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\}
\]
Substituting equations
(1E,2E) and \(\omega \) into (A) gives \begin{equation}
\tag{5E} b_{2}+\cos \left (\frac {x}{t}\right ) \left (b_{3}-a_{2}\right )-\cos \left (\frac {x}{t}\right )^{2} a_{3}-\frac {x \sin \left (\frac {x}{t}\right ) \left (t a_{2}+x a_{3}+a_{1}\right )}{t^{2}}+\frac {\sin \left (\frac {x}{t}\right ) \left (t b_{2}+x b_{3}+b_{1}\right )}{t} = 0
\end{equation}
Putting the above in normal form gives \[
\frac {-\cos \left (\frac {x}{t}\right )^{2} a_{3} t^{2}+\sin \left (\frac {x}{t}\right ) t^{2} b_{2}-\sin \left (\frac {x}{t}\right ) t x a_{2}+\sin \left (\frac {x}{t}\right ) t x b_{3}-\sin \left (\frac {x}{t}\right ) x^{2} a_{3}-t^{2} \cos \left (\frac {x}{t}\right ) a_{2}+t^{2} \cos \left (\frac {x}{t}\right ) b_{3}+\sin \left (\frac {x}{t}\right ) t b_{1}-\sin \left (\frac {x}{t}\right ) x a_{1}+b_{2} t^{2}}{t^{2}} = 0
\]
Setting the
numerator to zero gives \begin{equation}
\tag{6E} -\cos \left (\frac {x}{t}\right )^{2} a_{3} t^{2}+\sin \left (\frac {x}{t}\right ) t^{2} b_{2}-\sin \left (\frac {x}{t}\right ) t x a_{2}+\sin \left (\frac {x}{t}\right ) t x b_{3}-\sin \left (\frac {x}{t}\right ) x^{2} a_{3}-t^{2} \cos \left (\frac {x}{t}\right ) a_{2}+t^{2} \cos \left (\frac {x}{t}\right ) b_{3}+\sin \left (\frac {x}{t}\right ) t b_{1}-\sin \left (\frac {x}{t}\right ) x a_{1}+b_{2} t^{2} = 0
\end{equation}
Simplifying the above gives \begin{equation}
\tag{6E} b_{2} t^{2}-\frac {a_{3} t^{2}}{2}-\frac {a_{3} t^{2} \cos \left (\frac {2 x}{t}\right )}{2}+\sin \left (\frac {x}{t}\right ) t^{2} b_{2}-\sin \left (\frac {x}{t}\right ) t x a_{2}+\sin \left (\frac {x}{t}\right ) t x b_{3}-\sin \left (\frac {x}{t}\right ) x^{2} a_{3}-t^{2} \cos \left (\frac {x}{t}\right ) a_{2}+t^{2} \cos \left (\frac {x}{t}\right ) b_{3}+\sin \left (\frac {x}{t}\right ) t b_{1}-\sin \left (\frac {x}{t}\right ) x a_{1} = 0
\end{equation}
Looking at the above PDE shows the
following are all the terms with \(\{t, x\}\) in them. \[
\left \{t, x, \cos \left (\frac {x}{t}\right ), \cos \left (\frac {2 x}{t}\right ), \sin \left (\frac {x}{t}\right )\right \}
\]
The following substitution is now made to
be able to collect on all terms with \(\{t, x\}\) in them \[
\left \{t = v_{1}, x = v_{2}, \cos \left (\frac {x}{t}\right ) = v_{3}, \cos \left (\frac {2 x}{t}\right ) = v_{4}, \sin \left (\frac {x}{t}\right ) = v_{5}\right \}
\]
The above PDE (6E) now becomes \begin{equation}
\tag{7E} b_{2} v_{1}^{2}-\frac {1}{2} a_{3} v_{1}^{2}-\frac {1}{2} a_{3} v_{1}^{2} v_{4}+v_{5} v_{1}^{2} b_{2}-v_{5} v_{1} v_{2} a_{2}+v_{5} v_{1} v_{2} b_{3}-v_{5} v_{2}^{2} a_{3}-v_{1}^{2} v_{3} a_{2}+v_{1}^{2} v_{3} b_{3}+v_{5} v_{1} b_{1}-v_{5} v_{2} a_{1} = 0
\end{equation}
Collecting the above on the terms \(v_i\) introduced, and these are \[
\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\}
\]
Equation (7E) now
becomes \begin{equation}
\tag{8E} \left (b_{2}-\frac {a_{3}}{2}\right ) v_{1}^{2}+\left (b_{3}-a_{2}\right ) v_{2} v_{1} v_{5}-\frac {a_{3} v_{1}^{2} v_{4}}{2}+v_{5} v_{1}^{2} b_{2}-v_{5} v_{2}^{2} a_{3}+\left (b_{3}-a_{2}\right ) v_{3} v_{1}^{2}+v_{5} v_{1} b_{1}-v_{5} v_{2} a_{1} = 0
\end{equation}
Setting each coefficients in (8E) to zero gives the following equations to solve
\begin{align*} b_{1}&=0\\ b_{2}&=0\\ -a_{1}&=0\\ -a_{3}&=0\\ -\frac {a_{3}}{2}&=0\\ b_{2}-\frac {a_{3}}{2}&=0\\ b_{3}-a_{2}&=0 \end{align*}
Solving the above equations for the unknowns gives
\begin{align*} a_{1}&=0\\ a_{2}&=b_{3}\\ a_{3}&=0\\ b_{1}&=0\\ b_{2}&=0\\ b_{3}&=b_{3} \end{align*}
Substituting the above solution in the anstaz (1E,2E) (using \(1\) as arbitrary value for any unknown
in the RHS) gives
\begin{align*}
\xi &= t \\
\eta &= x \\
\end{align*}
The next step is to determine the canonical coordinates \(R,S\) . The canonical
coordinates map \(\left ( t,x\right ) \to \left ( R,S \right )\) where \(\left ( R,S \right )\) are the canonical coordinates which make the original ode become a
quadrature and hence solved by integration.
The characteristic pde which is used to find the canonical coordinates is
\begin{align*} \frac {d t}{\xi } &= \frac {d x}{\eta } = dS \tag {1} \end{align*}
The above comes from the requirements that \(\left ( \xi \frac {\partial }{\partial t} + \eta \frac {\partial }{\partial x}\right ) S(t,x) = 1\) . Starting with the first pair of ode’s in (1) gives an
ode to solve for the independent variable \(R\) in the canonical coordinates, where \(S(R)\) . Therefore
\begin{align*} \frac {dx}{dt} &= \frac {\eta }{\xi }\\ &= \frac {x}{t}\\ &= \frac {x}{t} \end{align*}
This is easily solved to give
\begin{align*} x = c_1 t \end{align*}
Where now the coordinate \(R\) is taken as the constant of integration. Hence
\begin{align*} R &= \frac {x}{t} \end{align*}
And \(S\) is found from
\begin{align*} dS &= \frac {dt}{\xi } \\ &= \frac {dt}{t} \end{align*}
Integrating gives
\begin{align*} S &= \int { \frac {dt}{T}}\\ &= \ln \left (t \right ) \end{align*}
Where the constant of integration is set to zero as we just need one solution. Now that \(R,S\)
are found, we need to setup the ode in these coordinates. This is done by evaluating
\begin{align*} \frac {dS}{dR} &= \frac { S_{t} + \omega (t,x) S_{x} }{ R_{t} + \omega (t,x) R_{x} }\tag {2} \end{align*}
Where in the above \(R_{t},R_{x},S_{t},S_{x}\) are all partial derivatives and \(\omega (t,x)\) is the right hand side of the original ode
given by
\begin{align*} \omega (t,x) &= \cos \left (\frac {x}{t}\right ) \end{align*}
Evaluating all the partial derivatives gives
\begin{align*} R_{t} &= -\frac {x}{t^{2}}\\ R_{x} &= \frac {1}{t}\\ S_{t} &= \frac {1}{t}\\ S_{x} &= 0 \end{align*}
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
\begin{align*} \frac {dS}{dR} &= \frac {t}{t \cos \left (\frac {x}{t}\right )-x}\tag {2A} \end{align*}
We now need to express the RHS as function of \(R\) only. This is done by solving for \(t,x\) in terms of \(R,S\)
from the result obtained earlier and simplifying. This gives
\begin{align*} \frac {dS}{dR} &= \frac {1}{\cos \left (R \right )-R} \end{align*}
The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an
ode, no matter how complicated it is, to one that can be solved by integration when the ode is in
the canonical coordiates \(R,S\) .
Since the ode has the form \(\frac {d}{d R}S \left (R \right )=f(R)\) , then we only need to integrate \(f(R)\) .
\begin{align*} \int {dS} &= \int {\frac {1}{\cos \left (R \right )-R}\, dR}\\ S \left (R \right ) &= \int \frac {1}{\cos \left (R \right )-R}d R + c_2 \end{align*}
\begin{align*} S \left (R \right )&= \int \frac {1}{\cos \left (R \right )-R}d R +c_2 \end{align*}
To complete the solution, we just need to transform the above back to \(t,x\) coordinates. This results
in
\begin{align*} \ln \left (t \right ) = \int _{}^{\frac {x}{t}}\frac {1}{\cos \left (\textit {\_a} \right )-\textit {\_a}}d \textit {\_a} +c_2 \end{align*}
The following diagram shows solution curves of the original ode and how they transform in the
canonical coordinates space using the mapping shown.
Original ode in \(t,x\) coordinates
Canonical coordinates
transformation
ODE in canonical coordinates \((R,S)\)
\( \frac {dx}{dt} = \cos \left (\frac {x}{t}\right )\)
\( \frac {d S}{d R} = \frac {1}{\cos \left (R \right )-R}\)
\(\!\begin {aligned} R&= \frac {x}{t}\\ S&= \ln \left (t \right ) \end {aligned} \)
Figure 2.15: Slope field \(x^{\prime } = \cos \left (\frac {x}{t}\right )\)
Summary of solutions found
\begin{align*}
\ln \left (t \right ) &= \int _{}^{\frac {x}{t}}\frac {1}{\cos \left (\textit {\_a} \right )-\textit {\_a}}d \textit {\_a} +c_2 \\
\end{align*}
2.1.15.6 ✓ Maple. Time used: 0.003 (sec). Leaf size: 27
ode := diff ( x ( t ), t ) = cos(x(t)/t);
dsolve ( ode , x ( t ), singsol=all);
\[
x = \operatorname {RootOf}\left (-\int _{}^{\textit {\_Z}}-\frac {1}{-\cos \left (\textit {\_a} \right )+\textit {\_a}}d \textit {\_a} +\ln \left (t \right )+c_1 \right ) t
\]
Maple trace
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \frac {d}{d t}x \left (t \right )=\cos \left (\frac {x \left (t \right )}{t}\right ) \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & \frac {d}{d t}x \left (t \right ) \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d t}x \left (t \right )=\cos \left (\frac {x \left (t \right )}{t}\right ) \end {array} \]
2.1.15.7 ✓ Mathematica. Time used: 0.215 (sec). Leaf size: 33
ode = D [ x [ t ], t ]== Cos [ x [ t ]/ t ];
ic ={};
DSolve [{ ode , ic }, x [ t ], t , IncludeSingularSolutions -> True ]
\[
\text {Solve}\left [\int _1^{\frac {x(t)}{t}}\frac {1}{K[1]-\cos (K[1])}dK[1]=-\log (t)+c_1,x(t)\right ]
\]
2.1.15.8 ✓ Sympy. Time used: 1.069 (sec). Leaf size: 24
from sympy import *
t = symbols("t")
x = Function("x")
ode = Eq(-cos(x(t)/t) + Derivative(x(t), t),0)
ics = {}
dsolve ( ode , func = x ( t ), ics = ics )
\[
x{\left (t \right )} = C_{1} e^{- \int \limits ^{\frac {t}{x{\left (t \right )}}} \frac {\cos {\left (\frac {1}{u_{1}} \right )}}{u_{1} \cos {\left (\frac {1}{u_{1}} \right )} - 1}\, du_{1}}
\]