1.5 problem 2(e)

1.5.1 Solving as quadrature ode
1.5.2 Maple step by step solution

Internal problem ID [2436]
Internal file name [OUTPUT/1928_Sunday_June_05_2022_02_39_49_AM_13964111/index.tex]

Book: Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961
Section: Exercis 2, page 5
Problem number: 2(e).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type

[_quadrature]

\[ \boxed {y^{\prime }=x \,{\mathrm e}^{x^{2}}} \]

1.5.1 Solving as quadrature ode

Integrating both sides gives \begin {align*} y &= \int { x \,{\mathrm e}^{x^{2}}\,\mathop {\mathrm {d}x}}\\ &= \frac {{\mathrm e}^{x^{2}}}{2}+c_{1} \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= \frac {{\mathrm e}^{x^{2}}}{2}+c_{1} \\ \end{align*}

Figure 5: Slope field plot

Verification of solutions

\[ y = \frac {{\mathrm e}^{x^{2}}}{2}+c_{1} \] Verified OK.

1.5.2 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & y^{\prime }=x \,{\mathrm e}^{x^{2}} \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int y^{\prime }d x =\int x \,{\mathrm e}^{x^{2}}d x +c_{1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & y=\frac {{\mathrm e}^{x^{2}}}{2}+c_{1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} y \\ {} & {} & y=\frac {{\mathrm e}^{x^{2}}}{2}+c_{1} \end {array} \]

Maple trace

`Methods for first order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
<- quadrature successful`
 

Solution by Maple

Time used: 0.016 (sec). Leaf size: 12

dsolve(diff(y(x),x)=x*exp(x^2),y(x), singsol=all)
 

\[ y \left (x \right ) = \frac {{\mathrm e}^{x^{2}}}{2}+c_{1} \]

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 17

DSolve[y'[x]==x*Exp[x^2],y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to \frac {e^{x^2}}{2}+c_1 \]