1.11 problem 11

1.11.1 Maple step by step solution

Internal problem ID [6777]
Internal file name [OUTPUT/6024_Monday_July_25_2022_01_59_51_AM_43122919/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EXERCISES Page 309
Problem number: 11.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "linear", "riccati", "separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type

[_separable]

\[ \boxed {{y^{\prime }}^{2}-x y \left (x +y\right ) y^{\prime }+x^{3} y^{3}=0} \] The ode \begin {align*} {y^{\prime }}^{2}-x y \left (x +y\right ) y^{\prime }+x^{3} y^{3} = 0 \end {align*}

is factored to \begin {align*} \left (y x^{2}-y^{\prime }\right ) \left (x y^{2}-y^{\prime }\right ) = 0 \end {align*}

Which gives the following equations \begin {align*} y x^{2}-y^{\prime } = 0\tag {1} \\ x y^{2}-y^{\prime } = 0\tag {2} \\ \end {align*}

Each of the above equations is now solved.

Solving ODE (1) In canonical form the ODE is \begin {align*} y' &= F(x,y)\\ &= f( x) g(y)\\ &= y \,x^{2} \end {align*}

Where \(f(x)=x^{2}\) and \(g(y)=y\). Integrating both sides gives \begin {align*} \frac {1}{y} \,dy &= x^{2} \,d x\\ \int { \frac {1}{y} \,dy} &= \int {x^{2} \,d x}\\ \ln \left (y \right )&=\frac {x^{3}}{3}+c_{1}\\ y&={\mathrm e}^{\frac {x^{3}}{3}+c_{1}}\\ &=c_{1} {\mathrm e}^{\frac {x^{3}}{3}} \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= c_{1} {\mathrm e}^{\frac {x^{3}}{3}} \\ \end{align*}

Verification of solutions

\[ y = c_{1} {\mathrm e}^{\frac {x^{3}}{3}} \] Verified OK.

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= c_{1} {\mathrm e}^{\frac {x^{3}}{3}} \\ \end{align*}

Verification of solutions

\[ y = c_{1} {\mathrm e}^{\frac {x^{3}}{3}} \] Verified OK.

Solving ODE (2) In canonical form the ODE is \begin {align*} y' &= F(x,y)\\ &= f( x) g(y)\\ &= x \,y^{2} \end {align*}

Where \(f(x)=x\) and \(g(y)=y^{2}\). Integrating both sides gives \begin{align*} \frac {1}{y^{2}} \,dy &= x \,d x \\ \int { \frac {1}{y^{2}} \,dy} &= \int {x \,d x} \\ -\frac {1}{y}&=\frac {x^{2}}{2}+c_{2} \\ \end{align*} Which results in \begin{align*} y &= -\frac {2}{x^{2}+2 c_{2}} \\ \end{align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= -\frac {2}{x^{2}+2 c_{2}} \\ \end{align*}

Verification of solutions

\[ y = -\frac {2}{x^{2}+2 c_{2}} \] Verified OK.

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= -\frac {2}{x^{2}+2 c_{2}} \\ \end{align*}

Verification of solutions

\[ y = -\frac {2}{x^{2}+2 c_{2}} \] Verified OK.

1.11.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & {y^{\prime }}^{2}-x y \left (x +y\right ) y^{\prime }+x^{3} y^{3}=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \left [y^{\prime }=x y^{2}, y^{\prime }=y x^{2}\right ] \\ \square & {} & \textrm {Solve the equation}\hspace {3pt} y^{\prime }=x y^{2} \\ {} & \circ & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {y^{\prime }}{y^{2}}=x \\ {} & \circ & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int \frac {y^{\prime }}{y^{2}}d x =\int x d x +c_{1} \\ {} & \circ & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & -\frac {1}{y}=\frac {x^{2}}{2}+c_{1} \\ {} & \circ & \textrm {Solve for}\hspace {3pt} y \\ {} & {} & y=-\frac {2}{x^{2}+2 c_{1}} \\ \square & {} & \textrm {Solve the equation}\hspace {3pt} y^{\prime }=y x^{2} \\ {} & \circ & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {y^{\prime }}{y}=x^{2} \\ {} & \circ & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int \frac {y^{\prime }}{y}d x =\int x^{2}d x +c_{1} \\ {} & \circ & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & \ln \left (y\right )=\frac {x^{3}}{3}+c_{1} \\ {} & \circ & \textrm {Solve for}\hspace {3pt} y \\ {} & {} & y={\mathrm e}^{\frac {x^{3}}{3}+c_{1}} \\ \bullet & {} & \textrm {Set of solutions}\hspace {3pt} \\ {} & {} & \left \{y=-\frac {2}{x^{2}+2 c_{1}}, y={\mathrm e}^{\frac {x^{3}}{3}+c_{1}}\right \} \end {array} \]

Maple trace

`Methods for first order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying 1st order linear 
trying Bernoulli 
<- Bernoulli successful 
Methods for first order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying 1st order linear 
<- 1st order linear successful`
 

Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

dsolve(diff(y(x),x)^2-x*y(x)*(x+y(x))*diff(y(x),x)+x^3*y(x)^3=0,y(x), singsol=all)
 

\begin{align*} y \left (x \right ) &= -\frac {2}{x^{2}-2 c_{1}} \\ y \left (x \right ) &= c_{1} {\mathrm e}^{\frac {x^{3}}{3}} \\ \end{align*}

Solution by Mathematica

Time used: 0.122 (sec). Leaf size: 38

DSolve[(y'[x])^2-x*y[x]*(x+y[x])*y'[x]+x^3*y[x]^3==0,y[x],x,IncludeSingularSolutions -> True]
 

\begin{align*} y(x)\to c_1 e^{\frac {x^3}{3}} \\ y(x)\to -\frac {2}{x^2+2 c_1} \\ y(x)\to 0 \\ \end{align*}