4.5 problem 5

4.5.1 Solving as second order ode missing x ode
4.5.2 Maple step by step solution

Internal problem ID [6825]
Internal file name [OUTPUT/6072_Thursday_July_28_2022_04_29_13_AM_10730317/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324
Problem number: 5.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_x"

Maple gives the following as the ode type

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

\[ \boxed {y^{2} y^{\prime \prime }+{y^{\prime }}^{3}=0} \]

4.5.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable \(y\) an independent variable. Using \begin {align*} y' &= p(y) \end {align*}

Then \begin {align*} y'' &= \frac {dp}{dx}\\ &= \frac {dy}{dx} \frac {dp}{dy}\\ &= p \frac {dp}{dy} \end {align*}

Hence the ode becomes \begin {align*} y^{2} p \left (y \right ) \left (\frac {d}{d y}p \left (y \right )\right )+p \left (y \right )^{3} = 0 \end {align*}

Which is now solved as first order ode for \(p(y)\). In canonical form the ODE is \begin {align*} p' &= F(y,p)\\ &= f( y) g(p)\\ &= -\frac {p^{2}}{y^{2}} \end {align*}

Where \(f(y)=-\frac {1}{y^{2}}\) and \(g(p)=p^{2}\). Integrating both sides gives \begin{align*} \frac {1}{p^{2}} \,dp &= -\frac {1}{y^{2}} \,d y \\ \int { \frac {1}{p^{2}} \,dp} &= \int {-\frac {1}{y^{2}} \,d y} \\ -\frac {1}{p}&=\frac {1}{y}+c_{1} \\ \end{align*} The solution is \[ -\frac {1}{p \left (y \right )}-\frac {1}{y}-c_{1} = 0 \] For solution (1) found earlier, since \(p=y^{\prime }\) then we now have a new first order ode to solve which is \begin {align*} -\frac {1}{y^{\prime }}-\frac {1}{y}-c_{1} = 0 \end {align*}

Integrating both sides gives \begin {align*} \int -\frac {c_{1} y +1}{y}d y &= x +c_{2}\\ -c_{1} y -\ln \left (y \right )&=x +c_{2} \end {align*}

Solving for \(y\) gives these solutions \begin {align*} \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= {\mathrm e}^{-\operatorname {LambertW}\left (c_{1} {\mathrm e}^{-x -c_{2}}\right )-x -c_{2}} \\ \end{align*}

Verification of solutions

\[ y = {\mathrm e}^{-\operatorname {LambertW}\left (c_{1} {\mathrm e}^{-x -c_{2}}\right )-x -c_{2}} \] Verified OK.

4.5.2 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & y^{2} y^{\prime \prime }+{y^{\prime }}^{3}=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & y^{\prime \prime } \\ \bullet & {} & \textrm {Define new dependent variable}\hspace {3pt} u \\ {} & {} & u \left (x \right )=y^{\prime } \\ \bullet & {} & \textrm {Compute}\hspace {3pt} y^{\prime \prime } \\ {} & {} & u^{\prime }\left (x \right )=y^{\prime \prime } \\ \bullet & {} & \textrm {Use chain rule on the lhs}\hspace {3pt} \\ {} & {} & y^{\prime } \left (\frac {d}{d y}u \left (y \right )\right )=y^{\prime \prime } \\ \bullet & {} & \textrm {Substitute in the definition of}\hspace {3pt} u \\ {} & {} & u \left (y \right ) \left (\frac {d}{d y}u \left (y \right )\right )=y^{\prime \prime } \\ \bullet & {} & \textrm {Make substitutions}\hspace {3pt} y^{\prime }=u \left (y \right ),y^{\prime \prime }=u \left (y \right ) \left (\frac {d}{d y}u \left (y \right )\right )\hspace {3pt}\textrm {to reduce order of ODE}\hspace {3pt} \\ {} & {} & y^{2} u \left (y \right ) \left (\frac {d}{d y}u \left (y \right )\right )+u \left (y \right )^{3}=0 \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d y}u \left (y \right )=-\frac {u \left (y \right )^{2}}{y^{2}} \\ \bullet & {} & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {\frac {d}{d y}u \left (y \right )}{u \left (y \right )^{2}}=-\frac {1}{y^{2}} \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} y \\ {} & {} & \int \frac {\frac {d}{d y}u \left (y \right )}{u \left (y \right )^{2}}d y =\int -\frac {1}{y^{2}}d y +c_{1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & -\frac {1}{u \left (y \right )}=\frac {1}{y}+c_{1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} u \left (y \right ) \\ {} & {} & u \left (y \right )=-\frac {y}{c_{1} y +1} \\ \bullet & {} & \textrm {Solve 1st ODE for}\hspace {3pt} u \left (y \right ) \\ {} & {} & u \left (y \right )=-\frac {y}{c_{1} y +1} \\ \bullet & {} & \textrm {Revert to original variables with substitution}\hspace {3pt} u \left (y \right )=y^{\prime },y =y \\ {} & {} & y^{\prime }=-\frac {y}{1+c_{1} y} \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & y^{\prime }=-\frac {y}{1+c_{1} y} \\ \bullet & {} & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {y^{\prime } \left (1+c_{1} y\right )}{y}=-1 \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int \frac {y^{\prime } \left (1+c_{1} y\right )}{y}d x =\int \left (-1\right )d x +c_{2} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & c_{1} y+\ln \left (y\right )=-x +c_{2} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} y \\ {} & {} & y={\mathrm e}^{-\mathit {LambertW}\left (c_{1} {\mathrm e}^{-x +c_{2}}\right )-x +c_{2}} \end {array} \]

Maple trace

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying 2nd order Liouville 
trying 2nd order WeierstrassP 
trying 2nd order JacobiSN 
differential order: 2; trying a linearization to 3rd order 
trying 2nd order ODE linearizable_by_differentiation 
trying 2nd order, 2 integrating factors of the form mu(x,y) 
trying differential order: 2; missing variables 
-> Calling odsolve with the ODE`, (diff(_b(_a), _a))*_b(_a)+_b(_a)^3/_a^2 = 0, _b(_a)`   *** Sublevel 2 *** 
   Methods for first order ODEs: 
   --- Trying classification methods --- 
   trying a quadrature 
   trying 1st order linear 
   trying Bernoulli 
   <- Bernoulli successful 
<- differential order: 2; canonical coordinates successful 
<- differential order 2; missing variables successful`
 

Solution by Maple

Time used: 0.047 (sec). Leaf size: 29

dsolve(y(x)^2*diff(y(x),x$2)+diff(y(x),x)^3=0,y(x), singsol=all)
 

\begin{align*} y \left (x \right ) &= 0 \\ y \left (x \right ) &= c_{1} \\ y \left (x \right ) &= -\frac {\operatorname {LambertW}\left (-c_{1} {\mathrm e}^{-x -c_{2}}\right )}{c_{1}} \\ \end{align*}

Solution by Mathematica

Time used: 0.609 (sec). Leaf size: 37

DSolve[y[x]^2*y''[x]+(y'[x])^3==0,y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to c_2 \left (1+\frac {1}{\text {InverseFunction}\left [-\frac {1}{\text {$\#$1}}-\log (\text {$\#$1})+\log (\text {$\#$1}+1)\&\right ][-x+c_1]}\right ) \]